Role of MicroRNAs in the Warburg Effect and Mitochondrial Metabolism in Cancer

  • Jin, Li-Hui (Center for Translational Medicine, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University) ;
  • Wei, Chen (Clinical Laboratory, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University)
  • Published : 2014.09.15


Metabolism lies at the heart of cell biology. The metabolism of cancer cells is significantly different from that of their normal counterparts during tumorigenesis and progression. Elevated glucose metabolism is one of the hallmarks of cancer cells, even under aerobic conditions. The Warburg effect not only allows cancer cells to meet their high energy demands and supply biological materials for anabolic processes including nucleotide and lipid synthesis, but it also minimizes reactive oxygen species production in mitochondria, thereby providing a growth advantage for tumors. Indeed, the mitochondria also play a more essential role in tumor development. As information about the numorous microRNAs has emerged, the importance of metabolic phenotypes mediated by microRNAs in cancer is being increasingly emphasized. However, the consequences of dysregulation of Warburg effect and mitochondrial metabolism modulated by microRNAs in tumor initiation and progression are still largely unclear.


  1. Anaya-Ruiz M, Cebada J, Delgado-Lopez G, et al (2013). MiR-153 silencing induces apoptosis in the MDA-MB-231 breast cancer cell line. Asian Pac J Cancer Prev, 14, 2983-6.
  2. Bienertova-Vasku J, Sana J, Slaby O (2013). The role of microRNAs in mitochondria in cancer. Cancer Lett, 336, 1-7.
  3. Calin GA, Cimmino A, Fabbri M, et al (2008). MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA, 105, 5166-71.
  4. Chen YH, Heneidi S, Lee JM, et al (2013). MiRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes, 62, 2278-86.
  5. Chow TF, Mankaruos M, Scorilas A, et al (2010). The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol, 183, 743-51.
  6. Croce CM (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet, 10, 704-14.
  7. Das S, Ferlito M, Kent OA, et al(2012). Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res, 110, 1596-603.
  8. Ebi H, Sato T, Sugito N, et al (2009). Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene, 28, 3371-9.
  9. Eichner LJ, Perry MC, Dufour CR, et al (2010). MiR-378(*) mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. Cell Metab, 12, 352-61.
  10. Ahmad A, Aboukameel A, Kong D, et al (2011). Phosphoglucose isomerase/autocrine motility factor mediates epithelialmesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res, 71, 3400-9.
  11. Anaya-Ruiz M, Bandala C, Perez-Santos JL (2013). MiR-485 acts as a tumor suppressor by inhibiting cell growth and migration in breast carcinoma T47D cells. Asian Pac J Cancer Prev, 14, 3757-60.
  12. Fang R, Xiao T, Fang Z, et al (2012). MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem, 287, 23227-35.
  13. Fei X, Qi M, Wu B, et al (2012). MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett, 586, 392-7.
  14. Gao P, Tchernyshyov I, Chang TC, et al (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458, 762-5.
  15. Garzon R, Calin GA, Croce CM (2009). MicroRNAs in Cancer. Annu Rev Med, 60, 167-79.
  16. Gatenby RA, Gillies RJ (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 4, 891-9.
  17. Gigli I, Maizon DO (2013). MicroRNAs and the mammary gland: A new understanding of gene expression. Genet Mol Biol, 36, 465-74.
  18. Hatziapostolou M, Polytarchou C, Iliopoulos D(2013). miRNAs link metabolic reprogramming to oncogenesis. Trends Endocrinol Metab, 24, 361-73.
  19. Horie T, Ono K, Nishi H, et al (2009). MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun, 389, 315-20.
  20. Hsu PP, Sabatini DM (2008). Cancer cell metabolism: Warburg and beyond. Cell, 134, 703-7.
  21. Ichimi T, Enokida H, Okuno Y, et al (2009). Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer Suppl, 125, 345-52.
  22. Iorio MV, Croce CM (2012). MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med, 4, 143-59.
  23. Jackson AL, Bartz SR, Schelter J, et al (2003). Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 21, 635-7.
  24. Jiang S, Zhang LF, Zhang HW, et al (2012). A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J, 31, 1985-98.
  25. Kefas B, Comeau, L, Erdle N, et al (2010). Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol, 12, 1102-12.
  26. Kinoshita T, Nohata N, Yoshino H, et al (2012). Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma. Int J Oncol, 40, 185-93.
  27. Latronico MV, Condorelli G (2012). The might of microRNA in mitochondria. Circ Res, 110, 1540-2.
  28. Li J, Donath S, Li Y, et al (2010). MiR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet, 6, e1000795.
  29. Li J, Xu ZW, Wang KH, et al (2013). Networks of MicroRNAs and genes in retinoblastomas. APJCP, 14, 6631-6.
  30. Li P, Jiao J, Gao G,et al (2012). Control of mitochondrial activity by miRNAs. J Cell Biochem, 113, 1104-10.
  31. Li SZ, Hu YY, Zhao J, et al (2014). MicroRNA-34a induces apoptosis in the human glioma cell line, A172, through enhanced ROS production and NOX2 expression. Biochem Biophys Res Commun, 444, 6-12.
  32. Li W, Wang J, Chen QD, et al (2013). Insulin promotes glucose consumption via regulation of miR-99a/mTOR/PKM2 pathway. PloS one, 8, e64924.
  33. Lu H. Buchan RJ, Cook SA (2010). MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res, 86, 410-20.
  34. Lunt SY, Vander Heiden MG (2011). Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol, 27, 441-4.
  35. Macheda ML, Rogers S, Best JD (2005). Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol, 202, 654-62.
  36. Ma L, Weinberg RA (2008). Micromanagers of malignancy: role of microRNAs in regulating metastasis.Trends Genet, 24, 448-56.
  37. Mateescu B, Batista L, Cardon M, et al (2011). MiR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med, 17, 1627-35.
  38. Pullen TJ, Silva Xavier G, Kelsey G, et al(2011). MiR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol, 31, 3182-94.
  39. Qi B , Yao WJ, Zhao BS, et al (2003). Involvement of microRNA-198 overexpression in the poor prognosis of esophageal cancer. APJCP, 14, 5073-6.
  40. Rengaraj D, Park TS, Lee SI, et al (2013). Regulation of glucose phosphate isomerase by the 3'UTR-specific miRNAs miR-302b and miR-17-5p in chicken primordial germ cells. Biol Reprod, 89, 33.
  41. Rottiers V, Naar AM (2012). MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol, 13, 239-50.
  42. Shea CM, Tzertzinis G (2010). Controlled expression of functional miR-122 with a ligand inducible expression system. BMC Biotechnol, 10, 76.
  43. Shi Q, Gibson GE (2011). Up-regulation of the mitochondrial malate dehydrogenase by oxidative stress is mediated by miR-743a. J Neurochem, 118, 440-8.
  44. Sikand K, Singh J, Ebron JS, et al (2012). Housekeeping gene selection advisory: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin are targets of miR-644a. PloS one, 7, e47510.
  45. Singh PK, Brand RE, Mehla K (2012). MicroRNAs in pancreatic cancer metabolism. Nat Rev Gastroenterol Hepatol, 9, 334-44.
  46. Srivastava SK, Bhardwaj A, Singh S, et al (2011). MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis, 32, 1832-9.
  47. Sun Q, Chen X, Ma J, et al (2011). Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA, 108, 4129-34.
  48. Sun Y, Zhao X, Zhou Y, et al (2012). MiR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep, 28, 1346-52.
  49. Tanaka H, Sasayama T, Tanaka K, et al (2013). MicroRNA-183 upregulates HIF-1alpha by targeting isocitrate dehydrogenase 2 (IDH2) in glioma cells. J Neurooncol, 111, 273-83.
  50. Tomasetti M, Neuzil J, Dong L (2014). MicroRNAs as regulators of mitochondrial function: role in cancer suppression. Biochim Biophys Acta, 1840, 1441-53.
  51. Trajkovski M, Hausser J, Soutschek J, et al (2011). MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 474, 649-53.
  52. Venkataraman S, Alimova I, Fan R, et al (2010). MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PloS one, 5, e10748.
  53. Vohwinkel CU, Lecuona E, Sun H, et al (2011). Elevated CO(2) levels cause mitochondrial dysfunction and impair cell proliferation. J Biol Chem, 286, 37067-76.
  54. Volinia S, Croce CM (2013). Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proc Natl Acad Sci U S A, 110, 7413-7.
  55. Wang JX, Jiao JQ, Li Q, et al (2011). MiR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med, 17, 71-8.
  56. Wang K, Long B, Jiao JQ, et al (2012). MiR-484 regulates mitochondrial network through targeting Fis1. Nat Commun, 3, 781.
  57. Wilfred BR, Wang WX, Nelson PT (2007). Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab, 91, 209-17.
  58. Wise DR, DeBerardinis RJ, Mancuso A, et al (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA, 105, 18782-7.
  59. Wong TS, Liu XB., Chung-Wai HoA, et al (2008). Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer Suppl, 123, 251-7.
  60. Yamasaki T, Seki N, Yoshino H, et al (2013). Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci, 104, 1411-9.
  61. You JS, Jones PA (2012). Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell, 22, 9-20
  62. Zhang X, Ng W L, Wang P, et al (2012). MicroRNA-21 modulates the levels of reactive oxygen species by targeting SOD3 and TNFalpha. Cancer Res, 72, 4707-13.
  63. Zhao H, Guan J, Lee HM, et al (2010). Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition. Pancreas, 39, 843-6.
  64. Zhou Q, Souba WW, Croce CM, et al (2010). MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut, 59, 775-84.

Cited by

  1. 2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells vol.16, pp.8, 2015,
  2. Expression Levels of Warburg-Effect Related microRNAs Correlate with each Other and that of Histone Deacetylase Enzymes in Adult Hematological Malignancies with Emphasis on Acute Myeloid Leukemia vol.23, pp.1, 2017,
  3. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells vol.8, pp.2, 2017,
  4. Long non-coding RNAs in cancer metabolism vol.38, pp.10, 2016,