DOI QR코드

DOI QR Code

MicroRNAs in Colorectal Cancer: from Diagnosis to Targeted Therapy

  • Orang, Ayla Valinezhad (Department of Animal Biology, Faculty of Natural Sciences, The University of Tabriz) ;
  • Barzegari, Abolfazl (School of Advanced Medical Sciences, Research Centre for Pharmaceotical Nanotechnology, Tabriz University of Medical Sciences)
  • Published : 2014.09.15

Abstract

Colorectal cancer (CRC) is one of the major healthcare problems worldwide and its processes of genesis include a sequence of molecular pathways from adenoma to carcinoma. The discovery of microRNAs, a subset of regulatory non-coding RNAs, has added new insights into CRC diagnosis and management. Together with several causes of colorectal neoplasia, aberrant expression of oncomiRs (oncogenic and tumor suppressor miRNAs) in cancer cells was found to be indirectly result in up- or down-regulation of targeted mRNAs specific to tumor promoter or inhibitor genes. The study of miRNAs as CRC biomarkers utilizes expression profiling methods from traditional tissue samples along with newly introduced non-invasive samples of faeces and body fluids. In addition, miRNAs could be employed to predict chemo- and radio-therapy responses and be manipulated in order to alleviate CRC characteristics. The scope of this article is to provide a comprehensive review of scientific literature describing aberrantly expressed miRNAs, and consequently dysregulation of targeted mRNAs along with the potential role of miRNAs in CRC diagnosis and prognosis, as well as to summarize the recent findings on miRNA-based manipulation methods with the aim of advancing in anti-CRC therapies.

Keywords

Colorectal cancer;microRNA;biomarker;cancer therapy

References

  1. Zhong M, Bian Z, Wu Z (2013). miR-30a suppresses cell migration and invasion through downregulation of PIK3CD in colorectal carcinoma. Cell Physiol Biochem, 31, 209-18. https://doi.org/10.1159/000343362
  2. Zhou W, Li X, Liu F, et al (2012). MiR-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro. Acta Biochim Biophys Sin (Shanghai), 44, 838-46. https://doi.org/10.1093/abbs/gms071
  3. Zhou XJ, Dong ZG, Yang YM, et al (2013a). Limited diagnostic value of microRNAs for detecting colorectal cancer: a metaanalysis. Asian Pac J Cancer Prev, 14, 4699-704. https://doi.org/10.7314/APJCP.2013.14.8.4699
  4. Zhou Y, Feng X, Liu YL, et al (2013b). Down-regulation of miR-126 is associated with colorectal cancer cells proliferation, migration and invasion by targeting IRS-1 via the AKT and ERK1/2 signaling pathways. PLoS One, 8, 81203. https://doi.org/10.1371/journal.pone.0081203
  5. Zhou Y, Wan G, Spizzo R, et al (2014). miR-203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase. Mol Oncol, 8, 83-92. https://doi.org/10.1016/j.molonc.2013.09.004
  6. Zhu L, Chen H, Zhou D, et al (2012). MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol, 29, 1037-43. https://doi.org/10.1007/s12032-011-9975-z
  7. Yang IP, Tsai HL, Hou MF, et al (2012). MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle. Carcinogenesis, 33, 1522-30. https://doi.org/10.1093/carcin/bgs166
  8. Yantiss RK, Goodarzi M, Zhou XK, et al (2009). Clinical, pathologic, and molecular features of early-onset colorectal carcinoma. Am J Surg Pathol, 33, 572-82. https://doi.org/10.1097/PAS.0b013e31818afd6b
  9. Yu G, Li H, Wang X, et al (2013a). MicroRNA-19a targets tissue factor to inhibit colon cancer cells migration and invasion. Mol Cell Biochem, 380, 239-47. https://doi.org/10.1007/s11010-013-1679-6
  10. Yu H, Gao G, Jiang L, et al (2013b). Decreased expression of miR-218 is associated with poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol, 6, 2904-11.
  11. Yu XF, Zou J, Bao ZJ, Dong J (2011). miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J Gastroenterol, 17, 4711-7. https://doi.org/10.3748/wjg.v17.i42.4711
  12. Yuan K, Xie K, Fox J, et al (2013). Decreased levels of miR-224 and the passenger strand of miR-221 increase MBD2, suppressing maspin and promoting colorectal tumor growth and metastasis in mice. Gastroenterology, 145, 853-64. https://doi.org/10.1053/j.gastro.2013.06.008
  13. Zhang BG, Li JF, Yu BQ, et al (2012). microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol Rep, 27, 1019-26.
  14. Zhang GJ, Xiao HX, Tian HP, et al (2013a). Upregulation of microRNA-155 promotes the migration and invasion of colorectal cancer cells through the regulation of claudin-1 expression. Int J Mol Med, 31, 1375-80.
  15. Zhang GJ, Zhou H, Xiao HX, Li Y, Zhou T (2013b). Upregulation of miR-224 promotes cancer cell proliferation and invasion and predicts relapse of colorectal cancer. Cancer Cell Int, 13, 104. https://doi.org/10.1186/1475-2867-13-104
  16. Zhang GJ, Zhou H, Xiao HX, Li Y, Zhou T (2014a). MiR-378 is an independent prognostic factor and inhibits cell growth and invasion in colorectal cancer. BMC Cancer, 14, 109. https://doi.org/10.1186/1471-2407-14-109
  17. Zhang H, Li Y, Huang Q, et al (2011a). MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell Death Differ, 18, 1702-10. https://doi.org/10.1038/cdd.2011.28
  18. Zhang J, Guo H, Zhang H, et al (2011b). Putative tumor suppressor miR-145 inhibits colon cancer cell growth by targeting oncogene Friend leukemia virus integration 1 gene. Cancer, 117, 86-95. https://doi.org/10.1002/cncr.25522
  19. Zhang N, Li X, Wu CW, et al (2013c). microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene, 32, 5078-88. https://doi.org/10.1038/onc.2012.526
  20. Zhang Y, Zheng L, Huang J, et al (2014b). MiR-124 radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One, 9, 93917. https://doi.org/10.1371/journal.pone.0093917
  21. Zhao Y, Samal E, Srivastava D (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214-20. https://doi.org/10.1038/nature03817
  22. Zheng G, Wang H, Zhang X, et al (2013). Identification and validation of reference genes for qPCR detection of serum microRNAs in colorectal adenocarcinoma patients. PLoS One, 8, 83025. https://doi.org/10.1371/journal.pone.0083025
  23. Wu CW, Dong YJ, Liang QY, et al (2013a). MicroRNA-18a attenuates DNA damage repair through suppressing the expression of ataxia telangiectasia mutated in colorectal cancer. PLoS One, 8, 57036. https://doi.org/10.1371/journal.pone.0057036
  24. Wu CW, Ng SS, Dong YJ, et al (2012a). Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut, 61, 739-45. https://doi.org/10.1136/gut.2011.239236
  25. Wu L, Li H, Jia CY, et al (2012b). MicroRNA-223 regulates FOXO1 expression and cell proliferation. FEBS Lett, 586, 1038-43. https://doi.org/10.1016/j.febslet.2012.02.050
  26. Wu W, Yang J, Feng X, et al (2013b). MicroRNA-32 (miR-32) regulates phosphatase and tensin homologue (PTEN) expression and promotes growth, migration, and invasion in colorectal carcinoma cells. Mol Cancer, 12, 30. https://doi.org/10.1186/1476-4598-12-30
  27. Xi Y, Formentini A, Chien M, et al (2006). Prognostic values of microRNAs in colorectal cancer. Biomark Insights, 2, 113-21.
  28. Xi Y, Nakajima G, Gavin E, et al (2007). Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. Rna, 13, 1668-74. https://doi.org/10.1261/rna.642907
  29. Xiang KM, Li XR (2014). MiR-133b acts as a tumor suppressor and negatively regulates TBPL1 in colorectal cancer cells. Asian Pac J Cancer Prev, 15, 3767-72. https://doi.org/10.7314/APJCP.2014.15.8.3767
  30. Xie Y, Xiao G, Coombes KR, et al (2011). Robust gene expression signature from formalin-fixed paraffin-embedded samples predicts prognosis of non-small-cell lung cancer patients. Clin Cancer Res, 17, 5705-14. https://doi.org/10.1158/1078-0432.CCR-11-0196
  31. Xu K, Chen Z, Qin C, Song X (2014). miR-7 inhibits colorectal cancer cell proliferation and induces apoptosis by targeting XRCC2. Onco Targets Ther, 7, 325-32.
  32. Xu K, Liang X, Shen K, et al (2012a). MiR-222 modulates multidrug resistance in human colorectal carcinoma by down-regulating ADAM-17. Exp Cell Res, 318, 2168-77. https://doi.org/10.1016/j.yexcr.2012.04.014
  33. Xu XM, Qian JC, Deng ZL, et al (2012b). Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncol Lett, 4, 339-345.
  34. Yadav NK, Shukla P, Omer A, Pareek S, Singh RK (2014). Next Generation Sequencing: Potential and Application in Drug Discovery. ScientificWorld Journal, 2014, 802437.
  35. Yamada N, Nakagawa Y, Tsujimura N, et al (2013). Role of intracellular and extracellular microRNA-92a in colorectal cancer. Transl Oncol, 6, 482-92. https://doi.org/10.1593/tlo.13280
  36. Yamamichi N, Shimomura R, Inada K, et al (2009). Locked nucleic acid in situ hybridization analysis of miR-21 expression during colorectal cancer development. Clin Cancer Res, 15, 4009-16. https://doi.org/10.1158/1078-0432.CCR-08-3257
  37. Yamashita S, Yamamoto H, Mimori K, et al (2012). MicroRNA-372 is associated with poor prognosis in colorectal cancer. Oncology, 82, 205-12.
  38. Yan H, Choi AJ, Lee BH, Ting AH (2011). Identification and functional analysis of epigenetically silenced microRNAs in colorectal cancer cells. PLoS One, 6, 20628. https://doi.org/10.1371/journal.pone.0020628
  39. Tsuchida A, Ohno S, Wu W, et al (2011). miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci, 102, 2264-71. https://doi.org/10.1111/j.1349-7006.2011.02081.x
  40. Tsunoda T, Takashima Y, Yoshida Y, et al (2011). Oncogenic KRAS regulates miR-200c and miR-221/222 in a 3D-specific manner in colorectal cancer cells. Anticancer Res, 31, 2453-9.
  41. Valeri N, Braconi C, Gasparini P, et al (2014). MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell, 25, 469-83. https://doi.org/10.1016/j.ccr.2014.03.006
  42. Valeri N, Gasparini P, Braconi C, et al (2010a). MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci USA, 107, 21098-103. https://doi.org/10.1073/pnas.1015541107
  43. Valeri N, Gasparini P, Fabbri M, et al (2010b). Modulation of mismatch repair and genomic stability by miR-155. Proc Natl Acad Sci U S A, 107, 6982-7. https://doi.org/10.1073/pnas.1002472107
  44. Vogelstein B, Fearon ER, Hamilton SR, et al (1988). Genetic alterations during colorectal-tumor development. N Engl J Med, 319, 525-32. https://doi.org/10.1056/NEJM198809013190901
  45. Volinia S, Calin GA, Liu CG, et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 103, 2257-61. https://doi.org/10.1073/pnas.0510565103
  46. Wang B, Zhang Q (2012). The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol, 138, 1659-66. https://doi.org/10.1007/s00432-012-1244-9
  47. Wang CJ, Zhou ZG, Wang L, et al (2009). Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers, 26, 27-34. https://doi.org/10.1155/2009/921907
  48. Wang F, Zhang P, Ma Y,et al (2012a). NIRF is frequently upregulated in colorectal cancer and its oncogenicity can be suppressed by let-7a microRNA. Cancer Lett, 314, 223-31. https://doi.org/10.1016/j.canlet.2011.09.033
  49. Wang H, An H, Wang B, et al (2013). miR-133a represses tumour growth and metastasis in colorectal cancer by targeting LIM and SH3 protein 1 and inhibiting the MAPK pathway. Eur J Cancer, 49, 3924-35. https://doi.org/10.1016/j.ejca.2013.07.149
  50. Wang H, Wu J, Meng X, et al (2011). MicroRNA-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis, 32, 1033-42. https://doi.org/10.1093/carcin/bgr081
  51. Wang Q, Huang Z, Ni S, et al (2012b). Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One, 7, 44398. https://doi.org/10.1371/journal.pone.0044398
  52. Wang X, Wang J, Ma H, Zhang J, Zhou X (2012c). Downregulation of miR-195 correlates with lymph node metastasis and poor prognosis in colorectal cancer. Med Oncol, 29, 919-27. https://doi.org/10.1007/s12032-011-9880-5
  53. Wang YX, Zhang XY, Zhang BF, et al (2010). Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis. J Dig Dis, 11, 50-4. https://doi.org/10.1111/j.1751-2980.2009.00413.x
  54. Weng L, Wu X, Gao H, et al (2010). MicroRNA profiling of clear cell renal cell carcinoma by whole-genome small RNA deep sequencing of paired frozen and formalin-fixed, paraffin-embedded tissue specimens. J Pathol, 222, 41-51.
  55. Schetter AJ, Leung SY, Sohn JJ, et al (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 299, 425-36.
  56. Schimanski CC, Frerichs K, Rahman F, et al (2009). High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroenterol, 15, 2089-96. https://doi.org/10.3748/wjg.15.2089
  57. Seton-Rogers S (2013). Non-coding RNAs: The cancer X factor. Nat Rev Cancer, 13, 224-5.
  58. Shemirani AI, Haghighi MM, Zadeh SM, et al (2011). Simplified MSI marker panel for diagnosis of colorectal cancer. Asian Pac J Cancer Prev, 12, 2101-4.
  59. Shen K, Liang Q, Xu K, et al (2012). MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol, 84, 320-30. https://doi.org/10.1016/j.bcp.2012.04.017
  60. Shi B, Sepp-Lorenzino L, Prisco M, et al (2007). Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem, 282, 32582-90. https://doi.org/10.1074/jbc.M702806200
  61. Shivapurkar N, Mikhail S, Navarro R, et al (2013). Decrease in blood miR-296 predicts chemotherapy resistance and poor clinical outcome in patients receiving systemic chemotherapy for metastatic colon cancer. Int J Colorectal Dis, 28, 887. https://doi.org/10.1007/s00384-012-1560-1
  62. Siegel R, Naishadham D, Jemal A (2012). Cancer statistics, 2012. CA Cancer J Clin, 62, 10-29. https://doi.org/10.3322/caac.20138
  63. Slaby O, Svoboda M, Fabian P, et al (2007). Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology, 72, 397-402. https://doi.org/10.1159/000113489
  64. Slattery ML, Wolff E, Hoffman MD, et al (2011). MicroRNAs and colon and rectal cancer: differential expression by tumor location and subtype. Genes Chromosomes Cancer, 50, 196-206. https://doi.org/10.1002/gcc.20844
  65. Song B, Wang Y, Kudo K, et al (2008). miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin Cancer Res, 14, 8080-6. https://doi.org/10.1158/1078-0432.CCR-08-1422
  66. Tagawa T, Haraguchi T, Hiramatsu H, et al (2012). Multiple microRNAs induced by Cdx1 suppress Cdx2 in human colorectal tumour cells. Biochem J, 447, 449-55. https://doi.org/10.1042/BJ20120434
  67. Tan YG, Zhang YF, Guo CJ, Yang M, Chen MY (2013). Screening of differentially expressed microRNA in ulcerative colitis related colorectal cancer. Asian Pac J Trop Med, 6, 972-6. https://doi.org/10.1016/S1995-7645(13)60174-1
  68. Tang W, Zhu Y, Gao J, et al (2014). MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer, 110, 450-8. https://doi.org/10.1038/bjc.2013.724
  69. Taylor DD, Gercel-Taylor C (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol, 110, 13-21. https://doi.org/10.1016/j.ygyno.2008.04.033
  70. Terzic J, Grivennikov S, Karin E, Karin M (2010). Inflammation and colon cancer. Gastroenterology, 138, 2101-14. https://doi.org/10.1053/j.gastro.2010.01.058
  71. Tong AW, Nemunaitis J (2008). Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther, 15, 341-55. https://doi.org/10.1038/cgt.2008.8
  72. Poudyal D, Cui X, Le PM, et al (2013). A key role of microRNA-29b for the suppression of colon cancer cell migration by American ginseng. PLoS One, 8, 75034. https://doi.org/10.1371/journal.pone.0075034
  73. Pourhoseingholi MA (2012). Increased burden of colorectal cancer in Asia. World J Gastrointest Oncol, 4, 68-70. https://doi.org/10.4251/wjgo.v4.i4.68
  74. Poy MN, Eliasson L, Krutzfeldt J, et al (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432, 226-30. https://doi.org/10.1038/nature03076
  75. Pu XX, Huang GL, Guo HQ, et al (2010). Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol, 25, 1674-80. https://doi.org/10.1111/j.1440-1746.2010.06417.x
  76. Qin S, Zhu Y, Ai F, et al (2014). MicroRNA-191 correlates with poor prognosis of colorectal carcinoma and plays multiple roles by targeting tissue inhibitor of metalloprotease 3. Neoplasma, 61, 27-34. https://doi.org/10.4149/neo_2014_005
  77. Qu A, Du L, Yang Y, et al (2014). Hypoxia-Inducible MiR-210 is an independent prognostic factor and contributes to metastasis in colorectal Cancer. PLoS One, 9, 90952. https://doi.org/10.1371/journal.pone.0090952
  78. Ragusa M, Statello L, Maugeri M, et al (2012). Specific alterations of the microRNA transcriptome and global network structure in colorectal cancer after treatment with MAPK/ERK inhibitors. J Mol Med (Berl), 90, 1421-38. https://doi.org/10.1007/s00109-012-0918-8
  79. Reid JF, Sokolova V, Zoni E, et al (2012). miRNA profiling in colorectal cancer highlights miR-1 involvement in METdependent proliferation. Mol Cancer Res, 10, 504-15. https://doi.org/10.1158/1541-7786.MCR-11-0342
  80. Rossi L, Bonmassar E, Faraoni I (2007). Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res, 56, 248-53. https://doi.org/10.1016/j.phrs.2007.07.001
  81. Saito Y, Liang G, Egger G, et al (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 9, 435-43. https://doi.org/10.1016/j.ccr.2006.04.020
  82. Salimzadeh H, Delavari A, Montazeri A, Mirzazadeh A (2012). Knowledge and practice of iranians toward colorectal cancer, and barriers to screening. Int J Prev Med, 3, 29-35.
  83. Sarver AL, French AJ, Borralho PM, et al (2009). Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer, 9, 401. https://doi.org/10.1186/1471-2407-9-401
  84. Sarver AL, Li L, Subramanian S (2010). MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res, 70, 9570-80. https://doi.org/10.1158/0008-5472.CAN-10-2074
  85. Schepeler T, Holm A, Halvey P, et al (2012). Attenuation of the beta-catenin/TCF4 complex in colorectal cancer cells induces several growth-suppressive microRNAs that target cancer promoting genes. Oncogene, 31, 2750-60. https://doi.org/10.1038/onc.2011.453
  86. Schepeler T, Reinert JT, Ostenfeld MS, et al (2008). Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res, 68, 6416-24. https://doi.org/10.1158/0008-5472.CAN-07-6110
  87. Mudduluru G, Ceppi P, Kumarswamy R, at al (2011). Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene, 30, 2888-99. https://doi.org/10.1038/onc.2011.13
  88. Naguibneva I, Ameyar-Zazoua M, Polesskaya A, at al (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol, 8, 278-84. https://doi.org/10.1038/ncb1373
  89. Nakajima G, Hayashi K, Xi Y, at al (2006). Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics, 3, 317-24.
  90. Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T )2010(. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int J Cancer, 127, 1072-80.
  91. Narasimhan K, Gauthaman K, Natesan P, et al (2014). Identification of unique miRNA biomarkers in colorectal adenoma and carcinoma using microarray: evaluation of their putative role in disease progression. ISRN Cell Biol, 2014.
  92. Ng EK, Chong WW, Jin H, et al (2009a). Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut, 58, 1375-81. https://doi.org/10.1136/gut.2008.167817
  93. Ng EK, Tsang WP, Ng SS, et al (2009b). MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer, 101, 699-706. https://doi.org/10.1038/sj.bjc.6605195
  94. Nishida N, Yamashita S, Mimori K, at al (2012). MicroRNA-10b is a prognostic indicator in colorectal cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal cancer cells. Ann Surg Oncol, 19, 3065-71. https://doi.org/10.1245/s10434-012-2246-1
  95. Nishida N, Yokobori T, Mimori K, et al (2011). MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int J Oncol, 38, 1437-43.
  96. Nugent M, Miller N, Kerin MJ (2012). Circulating miR-34a levels are reduced in colorectal cancer. J Surg Oncol, 106, 947-52. https://doi.org/10.1002/jso.23174
  97. Ogata-Kawata H, Izumiya M, Kurioka D, et al (2014). Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One, 9, 92921. https://doi.org/10.1371/journal.pone.0092921
  98. Olaru AV, Selaru FM, Mori Y, at al (2011). Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation. Inflamm Bowel Dis, 17, 221-31. https://doi.org/10.1002/ibd.21359
  99. Orang AV, Safaralizadeh R, Hosseinpour Feizi MA (2014a). Insights into the diverse roles of miR-205 in human cancers. Asian Pac J Cancer Prev, 15, 577-83. https://doi.org/10.7314/APJCP.2014.15.2.577
  100. Orang AV, Safaralizadeh R, Hosseinpour Feizi MA, Somi MH (2014b). Diagnostic and prognostic value of miR-205 in colorectal cancer. Asian Pac J Cancer Prev, 15, 4033-7. https://doi.org/10.7314/APJCP.2014.15.9.4033
  101. Park SY, Kim H, Yoon S, et al (2014). KITENIN-targeting microRNA-124 suppresses colorectal cancer cell motility and tumorigenesis. Mol Ther.
  102. Pichler M, Winter E, Ress AL, et al (2014). miR-181a is associated with poor clinical outcome in patients with colorectal cancer treated with EGFR inhibitor. J Clin Pathol, 67, 198-203. https://doi.org/10.1136/jclinpath-2013-201904
  103. Li Y, Li Y, Liu Y, at al (2014b). PAX6, a novel target of microRNA-7, promotes cellular proliferation and invasion in human colorectal cancer cells. Dig Dis Sci, 59, 598-606. https://doi.org/10.1007/s10620-013-2929-x
  104. Li YJ, Zhang ZY, Mao YY, et al (2014c). A genetic variant in MiR-146a modifies digestive system cancer risk: a metaanalysis. Asian Pac J Cancer Prev, 15, 145-50. https://doi.org/10.7314/APJCP.2014.15.1.145
  105. Link A, Balaguer F, Shen Y, at al (2010). Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev, 19, 1766-74. https://doi.org/10.1158/1055-9965.EPI-10-0027
  106. Liu L, Chen L, Xu Y, Li R, Du X (2010). microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun, 400, 236-40. https://doi.org/10.1016/j.bbrc.2010.08.046
  107. Liu M, Lang N, Chen X, at al (2011a). miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett, 301, 151-60. https://doi.org/10.1016/j.canlet.2010.11.009
  108. Liu M, Lang N, Qiu M, at al (2011b). miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int J Cancer, 128, 1269-79. https://doi.org/10.1002/ijc.25452
  109. Long L, Huang G, Zhu H, at al (2013). Down-regulation of miR-138 promotes colorectal cancer metastasis via directly targeting TWIST2. J Transl Med, 11, 275. https://doi.org/10.1186/1479-5876-11-275
  110. Lu YX, Yuan L, Xue XL, at al (2014). Regulation of colorectal carcinoma stemness, growth, and metastasis by an miR- 200c-Sox2-negative feedback loop mechanism. Clin Cancer Res, 20, 2631-42. https://doi.org/10.1158/1078-0432.CCR-13-2348
  111. Lujambio A, Calin GA, Villanueva A, at al (2008). A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A, 105, 13556-61. https://doi.org/10.1073/pnas.0803055105
  112. Ma Q, Wang X, Li Z, at al (2013). microRNA-16 represses colorectal cancer cell growth in vitro by regulating the p53/survivin signaling pathway. Oncol Rep, 29, 1652-8.
  113. Matsushima K, Isomoto H, Yamaguchi N, at al (2011). MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells. J Transl Med, 9, 30. https://doi.org/10.1186/1479-5876-9-30
  114. Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res, 1, 882-91.
  115. Mishra PJ, Song B, Mishra PJ, at al (2009). MiR-24 tumor suppressor activity is regulated independent of p53 and through a target site polymorphism. PLoS One, 4, 8445. https://doi.org/10.1371/journal.pone.0008445
  116. Mitchell PS, Parkin RK, Kroh EM, at al (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 105, 10513-8. https://doi.org/10.1073/pnas.0804549105
  117. Mollaie HR, Monavari SH, Arabzadeh SA, at al (2013). RNAi and miRNA in viral infections and cancers. Asian Pac J Cancer Prev, 14, 7045-56. https://doi.org/10.7314/APJCP.2013.14.12.7045
  118. Motoyama K, Inoue H, Takatsuno Y, at al (2009). Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol, 34, 1069-75.
  119. Kalimutho M, Del Vecchio Blanco G, Di Cecilia S, et al (2011). Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer. J Gastroenterol, 46, 1391-402. https://doi.org/10.1007/s00535-011-0456-0
  120. Kanaan Z, Rai SN, Eichenberger MR, et al (2012). Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg, 256, 544-51. https://doi.org/10.1097/SLA.0b013e318265bd6f
  121. Karaayvaz M, Pal T, Song B, at al (2011). Prognostic significance of miR-215 in colon cancer. Clin Colorectal Cancer, 10, 340-7. https://doi.org/10.1016/j.clcc.2011.06.002
  122. Koga Y, Yamazaki N, Yamamoto Y, at al (2013). Fecal miR-106a is a useful marker for colorectal cancer patients with falsenegative results in immunochemical fecal occult blood test. Cancer Epidemiol Biomarkers Prev, 22, 1844-52. https://doi.org/10.1158/1055-9965.EPI-13-0512
  123. Koga Y, Yasunaga M, Takahashi A, at al (2010). MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila), 3, 1435-42. https://doi.org/10.1158/1940-6207.CAPR-10-0036
  124. Kulda V, Pesta M, Topolcan O, at al (2010). Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. Cancer Genet Cytogenet, 200, 154-60. https://doi.org/10.1016/j.cancergencyto.2010.04.015
  125. Kunte DP, DelaCruz M, Wali RK, et al (2012). Dysregulation of microRNAs in colonic field carcinogenesis: implications for screening. PLoS One, 7, 45591. https://doi.org/10.1371/journal.pone.0045591
  126. Kurokawa K, Tanahashi T, Iima T, et al (2012). Role of miR-19b and its target mRNAs in 5-fluorouracil resistance in colon cancer cells. J Gastroenterol, 47, 883-95. https://doi.org/10.1007/s00535-012-0547-6
  127. Lanza G, Ferracin M, Gafa R, et al (2007). mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer, 6, 54. https://doi.org/10.1186/1476-4598-6-54
  128. Lawrie CH, Gal S, Dunlop HM, et al (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol, 141, 672-5. https://doi.org/10.1111/j.1365-2141.2008.07077.x
  129. Lee JK, Liles EG, Bent S, Levin TR, Corley DA (2014). Accuracy of fecal immunochemical tests for colorectal cancer: systematic review and meta-analysis. Ann Intern Med, 160, 171.
  130. Lewis BP, Burge CB, Bartel DP (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15-20. https://doi.org/10.1016/j.cell.2004.12.035
  131. Li HY, Zhang Y, Cai JH, Bian HL (2013). MicroRNA-451 inhibits growth of human colorectal carcinoma cells via downregulation of Pi3k/Akt pathway. Asian Pac J Cancer Prev, 14, 3631-4. https://doi.org/10.7314/APJCP.2013.14.6.3631
  132. Li J, Chen Y, Zhao J, Kong F, Zhang Y (2011). miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer Lett, 304, 52-9. https://doi.org/10.1016/j.canlet.2011.02.003
  133. Li JM, Zhao RH, Li ST, at al (2012). Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J, 33, 24-9.
  134. Li T, Yang J, Lv X, at al (2014a). miR-155 regulates the proliferation and cell cycle of colorectal carcinoma cells by targeting E2F2. Biotechnol Lett.
  135. Guo ST, Jiang CC, Wang GP, et al (2013). MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene, 32, 1910-20. https://doi.org/10.1038/onc.2012.214
  136. Haghighi MM, Javadi GR, Parivar K, et al (2010). Frequent MSI mononucleotide markers for diagnosis of hereditary nonpolyposis colorectal cancer. Asian Pac J Cancer Prev, 11, 1033-5.
  137. Han HB, Gu J, Zuo HJ, et al (2012). Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. J Pathol, 226, 544-55. https://doi.org/10.1002/path.3014
  138. Hatfield SD, Shcherbata HR, Fischer KA, et al (2005). Stem cell division is regulated by the microRNA pathway. Nature, 435, 974-8. https://doi.org/10.1038/nature03816
  139. He X, Dong Y, Wu CW, et al (2012). MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol Med, 18, 1491-8.
  140. Hofsli E, Sjursen W, Prestvik WS, et al (2013). Identification of serum microRNA profiles in colon cancer. Br J Cancer, 108, 1712-9. https://doi.org/10.1038/bjc.2013.121
  141. Hu G, Chen D, Li X, et al (2010). miR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo. Cancer Biol Ther, 10, 190-7. https://doi.org/10.4161/cbt.10.2.12186
  142. Huang Q, Gumireddy K, Schrier M, et al (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol, 10, 202-10. https://doi.org/10.1038/ncb1681
  143. Huang Z, Huang D, Ni S, et al (2010). Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer, 127, 118-26. https://doi.org/10.1002/ijc.25007
  144. Huang Z, Huang S, Wang Q, et al (2011). MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res, 71, 2582-9. https://doi.org/10.1158/0008-5472.CAN-10-3032
  145. Hummel R, Hussey DJ, Haier J (2010). MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer, 46, 298-311. https://doi.org/10.1016/j.ejca.2009.10.027
  146. Hur K, Toiyama Y, Takahashi M, et al (2013). MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut, 62, 1315-26. https://doi.org/10.1136/gutjnl-2011-301846
  147. Ivanovska I, Ball AS, Diaz RL, et al (2008). MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol, 28, 2167-74. https://doi.org/10.1128/MCB.01977-07
  148. Jahid S, Sun J, Edwards RA, et al (2012). miR-23a promotes the transition from indolent to invasive colorectal cancer. Cancer Discov, 2, 540-53. https://doi.org/10.1158/2159-8290.CD-11-0267
  149. Jamshidi-Adegani F, Langroudi L, Shafiee A, at al (2014). Mir-302 cluster exhibits tumor suppressor properties on human unrestricted somatic stem cells. Tumour Biol.
  150. Johnston RJ, Hobert O (2003). A microRNA controlling left/right neuronal asymmetry in caenorhabditis elegans. Nature, 426, 845-9. https://doi.org/10.1038/nature02255
  151. Josse C, Bouznad N, Geurts P, et al (2014). Identification of a microRNA landscape targeting the PI3K/Akt signaling pathway in inflammation-induced colorectal carcinogenesis. Am J Physiol Gastrointest Liver Physiol, 306, 229-43. https://doi.org/10.1152/ajpgi.00484.2012
  152. Cheng H, Zhang L, Cogdell DE, et al (2011). Circulating plasma MiR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One, 6, 17745. https://doi.org/10.1371/journal.pone.0017745
  153. Chiang Y, Song Y, Wang Z, et al (2011). Aberrant expression of miR-203 and its clinical significance in gastric and colorectal cancers. J Gastrointest Surg, 15, 63-70. https://doi.org/10.1007/s11605-010-1367-8
  154. Chim SS, Shing TK, Hung EC, et al (2008). Detection and characterization of placental microRNAs in maternal plasma. Clin Chem, 54, 482-90. https://doi.org/10.1373/clinchem.2007.097972
  155. Cottonham CL, Kaneko S, Xu L (2010). miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem, 285, 35293-302. https://doi.org/10.1074/jbc.M110.160069
  156. Croce CM, Calin GA (2005). miRNAs, cancer, and stem cell division. Cell, 122, 6-7. https://doi.org/10.1016/j.cell.2005.06.036
  157. Cummins JM, He Y, Leary RJ, et al (2006). The colorectal microRNAome. Proc Natl Acad Sci USA, 103, 3687-92. https://doi.org/10.1073/pnas.0511155103
  158. Diaz R, Silva J, Garcia JM, et al (2008). Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer, 47, 794-802. https://doi.org/10.1002/gcc.20580
  159. Diaz T, Tejero R, Moreno I, et al (2014). Role of miR-200 family members in survival of colorectal cancer patients treated with fluoropyrimidines. J Surg Oncol, 109, 676-83. https://doi.org/10.1002/jso.23572
  160. Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, et al (2009). MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer, 101, 707-14. https://doi.org/10.1038/sj.bjc.6605037
  161. Du W, Ma XL, Zhao C, et al (2014). Associations of single nucleotide polymorphisms in miR-146a, miR-196a, miR-149 and miR-499 with colorectal cancer susceptibility. Asian Pac J Cancer Prev, 15, 1047-55. https://doi.org/10.7314/APJCP.2014.15.2.1047
  162. Earle JS, Luthra R, Romans A, et al (2010). Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn, 12, 433-40. https://doi.org/10.2353/jmoldx.2010.090154
  163. Esquela-Kerscher A, Slack FJ (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 6, 259-69. https://doi.org/10.1038/nrc1840
  164. Fang WJ, Lin CZ, Zhang HH, et al (2007). Detection of let-7a microRNA by real-time PCR in colorectal cancer: a singlecentre experience from China. J Int Med Res, 35, 716-23. https://doi.org/10.1177/147323000703500518
  165. Feng B, Dong TT, Wang LL, et al (2012). Colorectal cancer migration and invasion initiated by microRNA-106a. PLoS One, 7, 43452. https://doi.org/10.1371/journal.pone.0043452
  166. Filipowicz W (2005). RNAi: the nuts and bolts of the RISC machine. Cell, 122, 17-20. https://doi.org/10.1016/j.cell.2005.06.023
  167. Geng L, Chaudhuri A, Talmon G, et al (2013). MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene.
  168. Grady WM, Parkin RK, Mitchell PS, et al (2008). Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene, 27, 3880-8. https://doi.org/10.1038/onc.2008.10
  169. Guo H, Hu X, Ge S, Qian G, Zhang J (2012). Regulation of RAP1B by miR-139 suppresses human colorectal carcinoma cell proliferation. Int J Biochem Cell Biol, 44, 1465-72. https://doi.org/10.1016/j.biocel.2012.05.015
  170. Bovell LC, Shanmugam C, Putcha BD, et al (2013). The prognostic value of microRNAs varies with patient race/ethnicity and stage of colorectal cancer. Clin Cancer Res, 19, 3955-65. https://doi.org/10.1158/1078-0432.CCR-12-3302
  171. Braun CJ, Zhang X, Savelyeva I, et al (2008). p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res, 68, 10094-104. https://doi.org/10.1158/0008-5472.CAN-08-1569
  172. Burk U, Schubert J, Wellner U, et al (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 9, 582-9. https://doi.org/10.1038/embor.2008.74
  173. Catela Ivkovic T, Aralica G, Cacev T, Loncar B, Kapitanovic S (2013). miR-106a overexpression and pRB downregulation in sporadic colorectal cancer. Exp Mol Pathol, 94, 148-54. https://doi.org/10.1016/j.yexmp.2012.11.002
  174. Cekaite L, Rantala JK, Bruun J (2012). MiR-9, -31, and -182 deregulation promote proliferation and tumor cell survival in colon cancer. Neoplasia, 14, 868-79. https://doi.org/10.1593/neo.121094
  175. Chandramouli A, Onyeagucha BC, Mercado-Pimentel ME (2012). MicroRNA-101 (miR-101) post-transcriptionally regulates the expression of EP4 receptor in colon cancers. Cancer Biol Ther, 13, 175-83. https://doi.org/10.4161/cbt.13.3.18874
  176. Chen DT, Hernandez JM, Shibata D, et al (2012a). Complementary strand microRNAs mediate acquisition of metastatic potential in colonic adenocarcinoma. J Gastrointest Surg, 16, 905-12. https://doi.org/10.1007/s11605-011-1815-0
  177. Chen HY, Lin YM, Chung HC, et al (2012b). miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res, 72, 3631-41. https://doi.org/10.1158/0008-5472.CAN-12-0667
  178. Chen J, Wang W, Zhang Y, Hu T, Chen Y (2014a). The roles of miR-200c in colon cancer and associated molecular mechanisms. Tumour Biol.
  179. Chen JF, Mandel EM, Thomson JM, et al (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 38, 228-33. https://doi.org/10.1038/ng1725
  180. Chen ML, Liang LS, Wang XK (2012c). miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1. Clin Exp Metastasis, 29, 457-69. https://doi.org/10.1007/s10585-012-9463-7
  181. Chen Q, Xia HW, Ge XJ, et al (2013). Serum miR-19a predicts resistance to FOLFOX chemotherapy in advanced colorectal cancer cases. Asian Pac J Cancer Prev, 14, 7421-6. https://doi.org/10.7314/APJCP.2013.14.12.7421
  182. Chen T, Yao LQ, Shi Q, et al (2014b). MicroRNA-31 contributes to colorectal cancer development by targeting factor inhibiting HIF-1alpha (FIH-1). Cancer Biol Ther, 15, 516-23. https://doi.org/10.4161/cbt.28017
  183. Chen X, Ba Y, Ma L, et al (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18, 997-1006. https://doi.org/10.1038/cr.2008.282
  184. Chen X, Guo X, Zhang H, et al (2009). Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene, 28, 1385-92. https://doi.org/10.1038/onc.2008.474
  185. Cheng AM, Byrom MW, Shelton J, Ford LP (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res, 33, 1290-7. https://doi.org/10.1093/nar/gki200
  186. Akao Y, Nakagawa Y, Naoe T (2006b). MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep, 16, 845-50.
  187. Akcakaya P, Ekelund S, Kolosenko I, et al (2011). miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol, 39, 311-8.
  188. Amodeo V, Bazan V, Fanale D, et al (2013). Effects of antimiR-182 on TSP-1 expression in human colon cancer cells: there is a sense in antisense? Expert Opin Ther Targets, 17, 1249-61. https://doi.org/10.1517/14728222.2013.832206
  189. Arndt GM, Dossey L, Cullen LM, et al (2009). Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer, 9, 374. https://doi.org/10.1186/1471-2407-9-374
  190. Asangani IA, Rasheed SA, Nikolova DA, et al (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27, 2128-36. https://doi.org/10.1038/sj.onc.1210856
  191. Balaguer F, Link A, Lozano JJ, et al (2010). Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res, 70, 6609-18. https://doi.org/10.1158/0008-5472.CAN-10-0622
  192. Balaguer F, Moreira L, Lozano JJ, et al (2011). Colorectal cancers with microsatellite instability display unique miRNA profiles. Clin Cancer Res, 17, 6239-49. https://doi.org/10.1158/1078-0432.CCR-11-1424
  193. Ahmed FE, Jeffries CD, Vos PW, et al (2009). Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics, 6, 281-95.
  194. Akao Y, Nakagawa Y, Naoe T (2006a). let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull, 29, 903-6. https://doi.org/10.1248/bpb.29.903
  195. Bandres E, Agirre X, Bitarte N, et al (2009a). Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer, 125, 2737-43. https://doi.org/10.1002/ijc.24638
  196. Bandres E, Bitarte N, Arias F, et al (2009b). microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin Cancer Res, 15, 2281-90. https://doi.org/10.1158/1078-0432.CCR-08-1818
  197. Bandres E, Cubedo E, Agirre X, et al (2006). Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer, 5, 29.
  198. Baraniskin A, Birkenkamp-Demtroder K, Maghnouj A, et al (2012). MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL. Carcinogenesis, 33, 732-9. https://doi.org/10.1093/carcin/bgs020
  199. Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  200. Bitarte N, Bandres E, Boni V (2011). MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells, 29, 1661-71. https://doi.org/10.1002/stem.741
  201. Boni V, Bitarte N, Cristobal I, et al (2010). miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its posttranscriptional thymidilate synthase regulation. Mol Cancer Ther, 9, 2265-75. https://doi.org/10.1158/1535-7163.MCT-10-0061

Cited by

  1. Association between the DICER rs1057035 Polymorphism and Cancer Risk: Evidence from a Meta-analysis of 1,2675 Individuals vol.16, pp.1, 2015, https://doi.org/10.7314/APJCP.2015.16.1.119
  2. Mechanistic Studies of Cyclin-Dependent Kinase Inhibitor 3 (CDKN3) in Colorectal Cancer vol.16, pp.3, 2015, https://doi.org/10.7314/APJCP.2015.16.3.965
  3. MiR-199a-5p and miR-375 affect colon cancer cell sensitivity to cetuximab by targeting PHLPP1 vol.19, pp.8, 2015, https://doi.org/10.1517/14728222.2015.1057569
  4. MicroRNA-4649-3p inhibits cell proliferation by targeting protein tyrosine phosphatase SHP-1 in nasopharyngeal carcinoma cells vol.36, pp.2, 2015, https://doi.org/10.3892/ijmm.2015.2245
  5. The significance of microRNA-184 on JAK2/STAT3 signaling pathway in the formation mechanism of glioblastoma pp.1792-1082, 2015, https://doi.org/10.3892/ol.2015.3798
  6. miR-143 suppresses the proliferation of NSCLC cells by inhibiting the epidermal growth factor receptor vol.12, pp.3, 2016, https://doi.org/10.3892/etm.2016.3555
  7. Development of a deregulating microRNA panel for the detection of early relapse in postoperative colorectal cancer patients vol.14, pp.1, 2016, https://doi.org/10.1186/s12967-016-0856-2
  8. Induction of K562 Cell Apoptosis by As4S4 via Down-Regulating miR181 vol.23, pp.1643-3750, 2017, https://doi.org/10.12659/MSM.899214
  9. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer vol.233, pp.2, 2017, https://doi.org/10.1002/jcp.25801
  10. MicroRNA-409-3p suppresses colorectal cancer invasion and metastasis partly by targeting GAB1 expression vol.137, pp.10, 2015, https://doi.org/10.1002/ijc.29607
  11. An update on miRNAs as biological and clinical determinants in colorectal cancer: a bench-to-bedside approach vol.11, pp.12, 2015, https://doi.org/10.2217/fon.15.83
  12. Effects of microRNA-26b on proliferation and invasion of glioma cells and related mechanisms vol.16, pp.4, 2017, https://doi.org/10.3892/mmr.2017.7121
  13. A reliable method for colorectal cancer prediction based on feature selection and support vector machine pp.1741-0444, 2018, https://doi.org/10.1007/s11517-018-1930-0
  14. MicroRNA-383 acts as a tumor suppressor in colorectal cancer by modulating CREPT/RPRD1B expression vol.57, pp.10, 2018, https://doi.org/10.1002/mc.22866
  15. Small non-coding RNA and colorectal cancer pp.15821838, 2019, https://doi.org/10.1111/jcmm.14209