DOI QR코드

DOI QR Code

Sporicidal Efficacy of a Fumigation Disinfectant Composited to Ortho-phenylphenol Against Spores of Clostridium Perfringens

Ortho-phenylphenol을 주성분을 하는 훈증소독제의 Clostridium perfringens 아포에 대한 살아포 효과

  • Cha, Chun-Nam (Engineering Research Institute and Department of Industrial Systems Engineering, Gyeongsang National University) ;
  • Cho, Youyoung (Department of Nursing, Hanyeong College) ;
  • Lee, Hu-Jang (Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University)
  • 차춘남 (경상대학교 산업시스템공학부 공학연구원) ;
  • 조유영 (한영대학 간호학과) ;
  • 이후장 (경상대학교 수의과대학 생명과학연구원)
  • Received : 2014.05.13
  • Accepted : 2014.09.01
  • Published : 2014.09.30

Abstract

This study was performed to evaluate the sporicidal efficacy of a fumigation disinfectant containing 20% ortho-phenylphenol against Clostridium perfringens (C. perfringens) spores. In this research, efficacy test of fumigant against C. perfringens spores was carried out according to French standard NF T 72-281. C. perfringens spores working culture suspension number (N value), all the spore numbers on the carriers exposed with the fumigant (n1, n2, and n3), the number of bacterial spore suspensions by pour plate method (N1), the number of bacterial spore suspensions by filter membrane method (N2) and the mean number of bacterial spore recovered on the control-carriers (T value) were obtained from the preliminary test. In addition, the reduction number of C. perfringens spores exposed with the fumigant (d value) was calculated using T value, the mean number of bacterial spore in recovery solution (n'1) and the mean number of bacterial spore on carriers plated in agar (n'2). N value was $4.3{\times}10^7spores/mL$, and n1, n2, and n3 were higher than 0.5N1, 0.5N2 and 0.5N1, respectively. Additionally, T value was $4.9{\times}10^5spores/carrier$. In the sporicidal effect of the fumigant, the d value was 4.52log reduction. According to the French standard for the fumigant, the d value for the effective sporicidal fumigant should be over than 3log reduction. The results indicated that Fumagari $OPP^{(R)}$ had an efficient sporicidal activity against spores of C. perfringens, then the fumigant can be applied to disinfect food materials and kitchen appliances contaminated with bacterial spores.

Acknowledgement

Supported by : (주)엘캄코바이오

References

  1. Chae, H.S., Kim, Y.H., Kim, J.Y., Kim, J.H., Kim, G.H., Choi, T.S., Shin, B.W., Lee, D.J. and Lee, J.H.: IsoIation and characterization of CIostridium perfringens on bovine and porcine carcass. Korean J. Vet. Serv. 29, 97-102 (2006).
  2. Waters, M., Savoie, A., Garmory, H.S., BuescheI, D., Popoff, M.R., Songer, J.G., TitbaII, R.W., McCIane, B.A. and Sarker, M.R.: 2003. Genotyping and pheno typing of beta2-toxigenic CIostridium perfringens fecaI isoIates associated with gastrointestinaI diseases in pigIets. J. CIin. MicrobioI. 41, 3584- 3591 (2003).
  3. Young, M.K., Smith, P., HoIIoway, J. and Davison, R.P.: An outbreak of CIostridium perfringens and the enforcement of food safety standards. Communic. Dis. InteII. 32, 462-465 (2008).
  4. Osman, K.M., SoIiman, Y.A., Amin, Z.M.S. and AIy, M.A.K.: PrevaIence of CIostridium perfringens type A isoIates in commerciaI broiIer chickens and parent broiIer breeder hens in Egypt. Rev. Sci. Tech. Off. Int. Epiz. 31, 931- 941 (2012). https://doi.org/10.20506/rst.31.3.2169
  5. Eriksen, J., Zenner, D., Anderson, S.R., Grant, K. and Kumar, D.: CIostridium perfringens in London, JuIy 2009: two weddings and an outbreak. Euro surveiII. 15, 19598 (2010).
  6. 식품의약품안전처.: 식중독통계시스템 - 원인물질별 통계. AvaiIabIe from: http://www.mfds.go.kr/e-stat/index.do?nMenu Code=31. Accessed May 12, 2014 (2012).
  7. Wen, Q. and McCIane, B.A.: Detection of enterotoxigenic CIostridium perfringens type A isoIates in American retaiI foods. AppI. environ. MicrobioI. 70, 2685-2691 (2004). https://doi.org/10.1128/AEM.70.5.2685-2691.2004
  8. Fernandez Miyakawa, M.E., Pistone Creydt, V., UzaI, F.A., McCIane, B.A. and Ibarra, C.: CIostridium perfringens enterotoxin damages the human intestine in vitro. Infect. Immun. 73, 8407-8410 (2005). https://doi.org/10.1128/IAI.73.12.8407-8410.2005
  9. Birkhead, G., Vogt, R. L., Heun, E. M., Snyder, J. T. and McCIane, B. A.: Characterization of an outbreak of CIostridium perfringens food poisoning by quantitative fecaI cuIture and fecaI enterotoxin measurement. J. CIin. MicrobioI. 26, 471-474 (1988).
  10. UdompijitkuI, P., Paredes-Sabja, D. and Sarker, M.R.: Inhibitory effects of nisin against CIostridium perfringens food poisoning and nonfood-borne isoIates. J. Food Sci. 77, M51- 56 (2012). https://doi.org/10.1111/j.1750-3841.2011.02475.x
  11. Sarker, M.R., Shivers, R.P., Sparks, S.G., Juneja, V.K. and McCIane, B.A.: Comparative experiments to examine the effects of heating on vegetative ceIIs and spores of CIostridium perfringens isoIates carrying pIasmid genes versus chromosomaI enterotoxin genes. AppI. Environ. MicrobioI. 66, 3234-3240 (2000). https://doi.org/10.1128/AEM.66.8.3234-3240.2000
  12. SIavi , D., BoerIin, P. Fabri, M., KIotins, K.C., Zoethout, J.K., Weir, P.E. and Bateman, D.: AntimicrobiaI susceptibiIity of CIostridium perfringens isoIates of bovine, chicken, porcine, and turkey origin from Ontario. Can. J. Vet. Res. 75, 89-97 (2011).
  13. ChaImers, G., Bruce, H.L., Hunter, D.B., Parreira, V.R., KuIkarni, R.R., Jiang, Y.F., Prescott, J.F. and BoerIin, P.: MuItiIocus sequence typing anaIysis of CIostridium perfringens isoIates from necrotic enteritis outbreaks in broiIer chicken popuIations. J. CIin. MicrobioI. 46, 3957-3964 (2008).
  14. GhoIamiandehkordi, A., Eeckhaut, V., Lanckriet, A., Timbermont, L., Bjerrum, L., DucateIIe, R., Haesebrouck, F. and Van ImmerseeI, F.: AntimicrobiaI resistance in CIostridium perfringens isoIates from broiIers in BeIgium. Vet. Res. Commun. 33, 1031-1037 (2009). https://doi.org/10.1007/s11259-009-9306-4
  15. Kassaify, Z.G., EI Hakim, R.G., Rayya, E.G., Shaib, H.A. and Barbour, E.K.: PreIiminary study on the efficacy and safety of eight individuaI and bIended disinfectants against pouItry and dairy indicator organisms. Vet. ItaI. 43, 821-830 (2007).
  16. Meckes, M.C. and Rhodes, E.R.: EvaIuation of bacterioIogicaI indicators of disinfection for aIkaIine treated biosoIids. J. Environ. Eng. Sci. 3, 231-236 (2004). https://doi.org/10.1139/s04-008
  17. Shams, A.M., O'ConneIIm H, Arduino, M.J. and Rose, L.J.: ChIorine dioxide inactivation of bacteriaI threat agents. Lett. AppI. MicrobioI. 53, 225-230 (2011). https://doi.org/10.1111/j.1472-765X.2011.03095.x
  18. Lindstedt, M., AIIenmark, S., Thompson, R.A. and Edebo, L.: AntimicrobiaI activity of betaine esters, quaternary ammonium amphipheIes which spontaneousIy hydroIyze into nontoxic components. Antimicrob. Agents Chemother. 34, 1949- 1954 (1990). https://doi.org/10.1128/AAC.34.10.1949
  19. Gotvajn, A.Z. and Zagorc-Kon an, J.: Laboratory simuIation of biodegradation of chemicaIs in surface waters: cIosed bottIe and respirometric test. Chemosphere, 38, 1339-1346 (1999). https://doi.org/10.1016/S0045-6535(98)00535-9
  20. RusseII, A.D.: Biocide use and antibiotic resistance: the reIevance of Iaboratory findings to cIinicaI and environmentaI situations. Lancet Infect. Dis., 3, 794-803 (2003). https://doi.org/10.1016/S1473-3099(03)00833-8
  21. CoeIhan, M., Bromig, K.H., GIas, K. and Roberts, A.L.: Determination and IeveIs of the biocide ortho-PhenyIphenoI in canned beers from different countries. J. Agric. Food Chem., 54, 5731-5735 (2006). https://doi.org/10.1021/jf060743p
  22. Zoutman, D., Shannon, M. and MandeI, A.: Effectiveness of a noveI ozone-based system for the rapid high-IeveI disinfection of heaIth care spaces and surfaces. Am. J. Infect. ControI, 39(10), 873-879 (2011). https://doi.org/10.1016/j.ajic.2011.01.012
  23. Formato, A., NavigIio, D., PuciIIo, G.P. and Nota, G.: Improved fumigation process for stored foodstuffs by using phosphine in seaIed chambers. J. Agric. Food Chem., 60, 331-338 (2012). https://doi.org/10.1021/jf204323s
  24. Association Francaise de NormaIisation (AFNOR): Methods of airborne disinfection of surfaces - Determination of bactericidaI, fungicidaI, yeasticidaI and sporicidaI activity. French standard NF T 72-281, AFNOR, Saint-Denis, pp. 6-22 (2009).
  25. Brashears, M.M., Amezquita, A. and Stratton, J.: VaIidation of methods used to recover Escherichia coIi O157:H7 and SaImoneIIa spp. subjected to stress conditionst. J. Food Prot., 4, 1466-1471 (2001).
  26. Tanny, G.B., MireIman, D. and PistoIe, T.: Improved fiItration technique for concentrating and harvesting bacteria. AppI. Environ. MicrobioI., 40, 269-273 (1980).
  27. UdompijitkuI, P., AInoman, M. and Sarker, M.R.: Inactivation strategy for CIostridium perfringens spores adhered to food contact surfaces. Food MicrobioI. 34, 328-336 (2013). https://doi.org/10.1016/j.fm.2013.01.003
  28. Speight, S., Moya, A., Macken, S., Chitnis, R., Hoffman, P.N., Davies, A., Bennett, A. and WaIker, J.T.: EvaIuation of the sporicidaI activity of different chemicaI disinfectants used in hospitaIs against CIostridium difficiIe. J. Hosp. Infect. 79, 18-22 (2011). https://doi.org/10.1016/j.jhin.2011.05.016
  29. VenczeI, L.V., Arrowood, M., Hurd, M. and Sobsey, M.D.: Inactivation of Cryptosporidium parvum oocysts and CIostridium perfringens spores by a mixed-oxidant disinfectant and by free chIorine. AppI. Environ. MicrobioI. 63, 1598-1601 (1997).