DOI QR코드

DOI QR Code

Thermal Design of High-power 5 Watt LEDs-based Searchlight

고출력 5 Watt LED기반 탐조등의 방열설계

  • Lee, A Ram (LED Convergence Engineering, Pukyong National University) ;
  • Her, In Sung (LED-Marine Convergence R&BD Center, Pukyong National University) ;
  • Lee, Se-Il (LED-Marine Convergence R&BD Center, Pukyong National University) ;
  • Yu, Young Moon (LED-Marine Convergence R&BD Center, Pukyong National University) ;
  • Kim, Jong Su (Department of Image Science & Engineering, Pukyong National University)
  • 이아람 (부경대학교 과학기술 융합전문대학원 LED 융합공학전공) ;
  • 허인성 (부경대학교 LED-해양융합기술연구센터) ;
  • 이세일 (부경대학교 LED-해양융합기술연구센터) ;
  • 유영문 (부경대학교 LED-해양융합기술연구센터) ;
  • 김종수 (부경대학교 이미지시스템공학과)
  • Received : 2014.07.03
  • Accepted : 2014.07.17
  • Published : 2014.09.01

Abstract

The heat dissipation conditions of high-power 5 watt LEDs-based searchlight modules were optimized with varying LED bar'shape, materials, and ambient temperature. The LED junction temperature was estimated by using Computational Fluid Dynamics simulation. The optimal heat dissipation conditions were found as follows; LED bar' shape: L=80 mm, W=4 mm, t=10 mm, copper material, LED junction temperature of $116.6^{\circ}C$, ambient temperature of $50^{\circ}C$, total mass of 184 g, and shadowing area of $320mm^2$. The difference between the junction temperatures of our fabricated and simulated LEDs-based searchlight modules is about $3^{\circ}C$, which confirms the validity of our thermal simulation results.

Acknowledgement

Grant : 해양 LED 융합기술지원 기반구축 및 상용화 기술개발

Supported by : 지식경제부

References

  1. K. C. Yung, H. Liem, H. S. Choy, and W. K. Lun, International Communications in Heat and Mass Transfer, 37, 1266 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2010.07.023
  2. S. W. Kang, K. C. Chien, and W. C. Lin, Journal of Applied Science and Engineering, 15, 97 (2012).
  3. N. Narendran and Y. Gu, IEEE/OSA Journal of Display Technology, 1, 167 (2005). https://doi.org/10.1109/JDT.2005.852510
  4. Daeyang, Lighting for Marine Use, 7, www.daeyang.co.kr, 2013.
  5. E. Shaukatullah, W. R. Storr, E. J. Hansen, and M. A. Gaynes, IEEE, 0-7803-3139-7/96 (1996).
  6. L. Kim, J. H. Choi, S. H. Jang, and M. W. Shin, Thermochimica Acta, 455, 21 (2007). https://doi.org/10.1016/j.tca.2006.11.031
  7. N. Wang, C. H. Wang, J. X. Lei, and D. S. Zhu, IEEE (ICEPT-HDP, 2009)
  8. T. Saenen and M. Baelmans, International Journal of Thermal Sciences, 59, 214 (2012). https://doi.org/10.1016/j.ijthermalsci.2012.04.018
  9. B. C. Kim, S. H. Lee, Y. S. Lee, and K. H. Kang, Journal of Electrostatics, 70, 438 (2012). https://doi.org/10.1016/j.elstat.2012.06.002
  10. S. I. Lee, S. M. Lee, and D. H. Park, KIIEEE, 24, 57 (2010).
  11. J. Wang, Y. X. Cai, X. J. Zhao, and C. Zhang, Microelectronics Journal, 45, 249 (2014). https://doi.org/10.1016/j.mejo.2013.11.011