DOI QR코드

DOI QR Code

Properties and Preparation of AlNO Multi-layer Thin Films Using DC Magnetron Sputter Method

직류 마그네트론 스퍼터법에 의한 AlNO 복층박막의 제조와 특성

  • Kim, Hyun-Hoo (Department of Display Engineering, Doowon Technical University) ;
  • Oh, Dong-Hyun (Department of Display Engineering, Doowon Technical University) ;
  • Baek, Chan-Soo (Department of Display Engineering, Doowon Technical University) ;
  • Jang, Gun-Eik (Department of Material Engineering, Chungbuk National University) ;
  • Choi, Dong-Ho (Research Development Team, Sunda Korea)
  • 김현후 (두원공과대학교 디스플레이공학과) ;
  • 오동현 (두원공과대학교 디스플레이공학과) ;
  • 백찬수 (두원공과대학교 디스플레이공학과) ;
  • 장건익 (충북대학교 재료공학과) ;
  • 최동호 (선다코리아 연구개발팀)
  • Received : 2014.07.30
  • Accepted : 2014.08.24
  • Published : 2014.09.01

Abstract

AlNO multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. $Al_2O_3$/AlNO(LMVF)/AlNO(HMVF)/Al/substrate of 4 multi-layer has been prepared in an Ar and ($N_2+O_2$) gas mixture, and $Al_2O_3$ of top layer is anti-reflection layer on double AlNO(LMVF)/AlNO(HMVF) layers and Al metal of infrared reflection layer. In this study, the roughness and surface properties of AlNO thin films were estimated by field emission scanning electron microscopy(FE-SEM). The grain size of AlNO thin films increased with increasing sputtering power. The composition of thin films has been systematically investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The absorptance of AlNO films shows the increasing trend with swelling ($N_2+O_2$) gas mixture in HMVF and LMVF deposition. The excellent optical performance showed above 98% of absorptance in visible wavelength region.

Acknowledgement

Supported by : 한국에너지기술평가원 (KETEP)

References

  1. K. Lee. J. Kor. Sol. Ener. Soc., 31, 48 (2011).
  2. K. Lee. J. Kor. Sol. Ener. Soc., 33, 31 (2013). https://doi.org/10.7836/kses.2013.33.4.031
  3. V. Dimitrova, D. Manova, T. Paskova, T. Uzunov, N. Ivanov, and D. Dechev, Vacuum, 51, 161 (1998). https://doi.org/10.1016/S0042-207X(98)00150-X
  4. T. Ohm, W. Yeo, and D. Kim, J. Kor. Sol. Ener. Soc., 33, 27 (2013). https://doi.org/10.7836/kses.2013.33.3.027
  5. E. Barrera-Calva, J. Mendez-Vivar, M. Ortega-Lopez, L. Huerta-Arcos, J. Morales-Corona, and R. Olayo- Gonzalez., Res. Lett. Mater. Sci., 2008, 1 (2008).
  6. M. Julkarnain, J. Hossain, K. Sharif, and K. Khan, J. Optoelect. adv. Mater., 13, 485 (2011).
  7. K. Lee. J. Kor. Sol. Ener. Soc., 30, 90 (2010).
  8. H. Lee, J. Kim, S. Lee, Y. Kang, S. Lee, and M. Moon, J. Kor. Sol. Ener. Soc., 30, 107 (2010).
  9. K. Lee. J. Kor. Sol. Ener. Soc., 28, 33 (2008).
  10. J. Fan and P. Zavracky, Appl. Phys. Lett., 29, 478 (1977).
  11. H. Graighead and R. Buhmann, J. Vac. Sci. Technol., 15, 269 (1978). https://doi.org/10.1116/1.569568
  12. W. Pekruhn, L. Thomas, I. Eroser, A. Schroder, and U. Wenning, Sol. Energy Mater., 13, 199 (1986).
  13. L. Thomas and C. Tang, Sol. Energy Mater., 18, 117 (1989). https://doi.org/10.1016/0165-1633(89)90046-4
  14. T. Sathiaraj, R. Thangaraj, and O. Agnihotri, Sol. Energy Mater., 18, 343 (1989). https://doi.org/10.1016/0165-1633(89)90059-2
  15. Q. Zhang, Sol. Energy Mater. Sol. Cells, 62, 63 (2000). https://doi.org/10.1016/S0927-0248(99)00136-1
  16. T. Bostrom, E. Wackelgard, and G. Westin, Sol. Energy Mater. Sol. Cells, 89, 197 (2005). https://doi.org/10.1016/j.solmat.2005.01.014
  17. K. Lee. J. Kor. Sol. Ener. Soc., 26, 57 (2006).
  18. K. Lee. J. Kor. Phys.. Soc., 55, 1487 (2009). https://doi.org/10.3938/jkps.55.1487