Humidity Sensitive Characterization by Electrode Pattern on the Capacitive Humidity Sensor Using Polyimide

폴리이미드 용량형 습도센서의 전극 패턴에 따른 감습 특성

  • Park, Sung-Back (Department of Nano Engineering, Dong-A University) ;
  • Shin, Hoon-Kyu (National Institute for Nanomaterials Technology, Pohang University of Science and Technology) ;
  • Lim, Jun-Woo (Subdivision of Electronic Information Engineering, KyungNam College of Information & Technology) ;
  • Chang, Sang-Mok (Department of Nano Engineering, Dong-A University) ;
  • Kwon, Young-Soo (Department of Nano Engineering, Dong-A University)
  • 박성백 (동아대학교 대학원 나노공학과) ;
  • 신훈규 (포항공과대학교 나노융합기술원) ;
  • 임준우 (경남정보대학교 전자정보계열) ;
  • 장상목 (동아대학교 대학원 나노공학과) ;
  • 권영수 (동아대학교 대학원 나노공학과)
  • Received : 2014.08.11
  • Accepted : 2014.08.21
  • Published : 2014.09.01


Electrode pattern effects on the capacitive humidity sensor were investigated. The fabrication of the capacitive humidity sensor was formed with three steps. The bottom electrode was formed on the silicon substrate with Pt/Ti thin layer by using shadow mask and e-beam evaporator. The photo sensitive polyimide was formed on the bottom electrode by using photolithography process as a humidity sensitive thin film. The upper electrode was formed on the polyimide thin film with Pt/Ti thin layer by using e-beam evaporator and lift-off method. Three electrode patterns, such as circle, square, and triangle pattern, were used and changed the sizes to investigate the effects. The capacitances of the sensors were decreased 622 to 584 pF with the area decreament of patterns 250,000 to $196,250{\mu}m^2$. From these results, a capacitive humidity sensor with photo sensitive polyimide is expected to be applied to a high sensitive humidity sensor.


Supported by : 한국연구재단


  1. J. C. Greenwood, J. Phys. E; 'Sci. Instrum., 21, 1114 (1988).
  2. K. E. Peteren, Proc. IEEE, 70, 420 (1982).
  3. J. M. Giachino, Sensors and Actuators, 10, 239 (1986).
  4. S. Moller, J. Lin, and E. Obermeier, Sensors and Actuators B, 24, 343 (1995).
  5. R. E. Cavicchi, S. Semancik, and C. J. Taylor, J. Electroceramics, 9, 155 (2002).
  6. Y. Y. Qiu, C. Azeredo-Leme, L. R. Alcacer, and J. E. Franca, Sensors and Actuators A, 92, 80 (2001).
  7. U. Dellwo, P. Keller, and J. U. Meyer, Sensors and Actuators A, 61, 298 (1997).
  8. D. G. Yarkin, Sensors and Actuators A, 107, 1 (2003).
  9. N. Zhang, K. Yu, Z. Zhu, and D. Jiang, Sensors and Actuators A, 143, 245 (2008).
  10. T. M. Berlicki, E. Murawski, M. Muszynski, S. J. Osadnik, and E. L. Prociow, Sensors and Actuators A, 64, 213 (1998).
  11. S. P. Yawale, S. S. Yawale, and G. T. Landhade, Sensors and Actuators A, 135, 388 (2007).
  12. T. J. Harpster, B. Stark, and K. Najafi, Sensors and Actuators A, 95, 100 (2002).
  13. Y. Ma, S. Ma, T. Wang, and W. Fang, Sensors and Actuators A, 49, 47 (1995).
  14. M. Bjorkqvist, J. Salonen, J. Paski, and E. Laine, Sensors and Actuators A, 112, 244 (2004).
  15. E. J. Connolly, G. M. O'Halloran, H. T. M. Pham, P. M. Sarro, and P. J. French, Sensors and Actuators A, 99, 25 (2002).
  16. F. Reverter and O. Casas, Sensors and Actuators A, 143, 315 (2008).
  17. A. Foucaran, B. Sorli, M. Garcia, F. Pascal-Delannoy, A. Giani, and A. Boyer, Sensors and Actuators A, 79, 189 (2000).
  18. J. Das, S. M. Hossain, S. Chakraborty, and H. Saha, Sensors and Actuators A, 94, 44 (2001).