DOI QR코드

DOI QR Code

The Effect of Sintering on the Thermoelectric Properties of Bulk Nanostructured Bismuth Telluride (Bi2Te3)

나노구조를 기반으로 하는 Bi2Te3 소결과 그 시간에 따른 열전 특성

  • Yu, Susanna (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kang, Min-Seok (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, Do-Kyung (Industry cooperation Foundation, Konyang University) ;
  • Moon, Kyung-Sook (Department of Mathematics & information, Gachon University) ;
  • Toprak, M.S. (KTH, Royal Institute of Technology) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 유수산나 (광운대학교 전자재료공학과) ;
  • 강민석 (광운대학교 전자재료공학과) ;
  • 김도경 (건양대학교 산학협력단) ;
  • 문경숙 (가천대학교 IT대학 수학금융정보학과) ;
  • ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2014.08.01
  • Accepted : 2014.08.18
  • Published : 2014.09.01

Abstract

Thermoelectric materials have been the topic of intensive research due to their unique dual capability of directly converting heat into electricity or electrical power into cooling or heating. Bismuth telluride ($Bi_2Te_3$) is the best-known commercially used thermoelectric material in the bulk form for cooling and power generation applications In this work we focus on the large scale synthesis of nanostructured undoped bulk nanostructured $Bi_2Te_3$ materials by employing a novel bottom-up solution-based chemical approach. Spark plasma sintering has been employed for compaction and sintering of $Bi_2Te_3$ nanopowders, resulting in relative density of $g{\cdot}cm^{-3}$ while preserving the nanostructure. The average grain size of the final compacts was obtained as 200 nm after sintering. An improved NS bulk undoped $Bi_2Te_3$ is achieved with sintered at $400^{\circ}C$ for 4 min holding time.

References

  1. L. E. Bell, Science, 321, 5359 (2008).
  2. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wand,Z. Ren, J. P. Fleurial, and P. Gonga, Adv. Mater., 19, 8 (2007).
  3. M. G. Kanatzidis, Chem. Mater., 22, 3 (2010). https://doi.org/10.1021/cm903167b
  4. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’quinn, Nature, 413, 6856 (2001).
  5. W. Jun, T. Xinfeng, L. Haiqiang, Y. Xiuli, and Z. Qingjie, J. Wuhan Univ. Technol., Mater. Sci. Ed., 21, 4 (2006). https://doi.org/10.1007/BF02861457
  6. L. D. Zhao, B. P. Zhang, J. F. Li, H. L. Zhang, and W. S. Liu, Solid State Sci., 10, 5 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.08.007
  7. H. Lee, D. Vashaee, D. Z. Wang, M. S. Dresselhaus, Z. F. Ren, and G. Chen, J. Appl. Phys., 107, 094308 (2010). https://doi.org/10.1063/1.3388076