Piezoelectric and Dielectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of Fe2O3 Addition

Fe2O3첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3계 세라믹스의 압전 및 유전 특성

  • Lee, Gwang-Min (Department of Electrical Engineering, Semyung University) ;
  • Shin, Sang-Hoon (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University)
  • Received : 2014.07.28
  • Accepted : 2014.08.13
  • Published : 2014.09.01


In this paper, in order to develop outstanding Pb-free composition ceramics, the $Fe_2O_3$-doped ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ + 0.3 wt% $Bi_2O_3$ + x wt% $Fe_2O_3$ (x= 0~1.0 wt%)(abbreviated as NKL-NST) lead-free piezoelectric ceramics have been synthesized using the ordinary solid state reaction method. The effect of $Fe_2O_3$-doping on their microstructure and electrical properties were investigated. XRD diffraction pattern studies confirm that $Fe_2O_3$ completely diffused into the NKL-NST lattice to form a new stable soild solution with $Fe^{3+}$ entering the $Nb^{5+}$, $Sb^{5+}$ and $Ta^{5+}$ of B-site. And, phase structure of all the ceramics exhibited pure perovskite phase and no secondary phase was found in the ceramics. The ceramics doped with 0.6 wt% $Fe_2O_3$ have the optimum values of piezoelectric constant($d_{33}$), planar piezoelectric coupling coefficient($k_p$) and mechanical quality factor($Q_m$) : $d_{33}$ = 233 [pC/N], $k_p$= 0.44, $Q_m$= 95. These results indicate that the ($Na_{0.525}K_{0.443}Li_{0.037}$)($Nb_{0.883}Sb_{0.08}Ta_{0.037}$)$O_3$ +0.3 wt% $Bi_2O_3$ + 0.6 wt% $Fe_2O_3$ ceramic is a promising candidate for lead-free piezoelectric ceramics.


  1. F. Azough, M. Wegrzyn, R. Freer, S. Sharma, and D. Hall, J. Eur. Ceram. Soc., 31, 569 (2011).
  2. R. Zuo, Z. Xu, and L. Li, J. Phys. Chem. Solids, 69, 1728 (2008).
  3. L. Chen, H. Fan, M. Zhang, C. Yang, and X. Chen, J. Alloys Compd., 492, 313 (2010).
  4. C. Zhang, Z. Chen, W. J. Ji, L. Wang, Y. B. Chen, S. H. Yao, S. T. Zhang, and Y. F. Chen, J. Alloys Compd, 509, 2425 (2011).
  5. B. H. Seo and J. H. Yoo, J. KIEEME, 23, 617 (2010).
  6. R. Zuo, C. Ye, and X. Fang, J. Phys. Chem. Solids, 69, 230 (2008).
  7. Y. S. Kim, J. H. Yoo, J. I. Hong, and J. Y. Lee, J. KIEEME, 26, 806 (2013).
  8. R. Zuo, Z. Xu, and L. Li, J. Phys. Chem. Solids, 69, 1728 (2008).
  9. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005).
  10. Y. Zhao, Y. Zhao, R. Huang, R. Liu, and H. Zhou, Mater. Lett., 75, 146 (2012).
  11. X. Chao, Z. Yang, Z. Li, and Y. Li, J. Alloys Compd., 518, 1 (2012).
  12. Y. Saito, H. Takao, T. Tani, T. Nonoama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004).
  13. H. Wang, J. Wu, X. Cheng, D. Xiao, and J. Zhu, J. Alloys Compd., 585, 748 (2014).
  14. J. J. Zhou, J. F. Li, L. Q. Cheng, K. Wang, X. W. Zhang, and Q. M. Wamg, J. Eur. Ceram. Soc., 32, 3575 (2012).
  15. J. Du, Z. Xu, B. Deng, R. Chu, X. Yi, L. Zheng, and Y. Li, Ceram. Int., 40, 4319 (2014).
  16. J. Liu, J. Zhu, X. Li, M. Wang, X. Zhu, J. Zhu, and D. Xiao, Mater. Lett., 65, 948 (2011).
  17. Y. Guo, K. I. Kakimoto, and H. Ohsato, Mater. Lett., 59, 241 (2005).
  18. D. Lin, K. W. Kwok, K. H. Lam, and H.L.W. Chan, J. Appl. Phys., 101, 074111 (2007).
  19. S. X. Huo, S. L. Yuan, Y. Qiu, Z. Z. Ma, and C. H. Wang, Mater. Lett., 68, 8 (2012).
  20. J. R. Noh and J. H. Yoo, J. Electroceram, 29, 144 (2012).