Advanced Scheme for PDR system Using Neural Network

Neural Network를 이용한 PDR 시스템의 정확도 향상 기법

  • Received : 2014.04.23
  • Accepted : 2014.08.07
  • Published : 2014.08.31


This paper proposes an improved scheme of pedestrian position information system using neural network theory in a GPS-disabled area. Through a learning/obtaining gait pattern and step distance about walk, run, duck walk, crab walk and crawl, the position estimation error could be minimized by rejecting the inertial navigation drift. A portable hardware module was implemented to evaluate the performance of the proposed system. The performance and effectiveness of the suggested algorithm was verified by experiments indoors.


Artificial Neural Network;IMU;Kalman filter;Position information


  1. Y. Zhou, C. L. Law, Y. L. Guan and F. Chin, "Indoor Elliptical Localization Based on Asynchronous UWB Range Measurement", IEEE Trans. on Instrumentation and Measurement, vol.60, no.1, pp.248-257, January, 2011. DOI:
  2. S. H. Fang and T. N. Lin, "Principal Component Localization in Indoor WLAN Environments", IEEE Trans. on Mobile Computing, vol.11, no.1, pp.100-110, January, 2012. DOI:
  3. C. Huang, Z. Liao and L. Zhao, "Synergism of INS and PDR in Self-Contained Pedestrian Tracking with a Miniature Sensor Module", IEEE Sensors Journal, vol.10, no.8, pp.1349-1359, August, 2010. DOI:
  4. J. Borenstein, L. Ojeda and S. Kwanmuang, "Heuristic Reduction of Gyro Drift For Personnel Tracking Systems", The Journal of Navigation, vol.62, no.1, pp.41-58, January 2009. DOI:
  5. W. Chen, "An Effective Pedestrian Dead Reckoning Algorithm Using a Unified Heading Error Model", Position Location and Navigation Symposium, pp.340-347, May, 2010. DOI:
  6. S. H. Shin, C. G. Park and S. Choi, "New Map-Matching Algorithm Using Virtual Track for Pedestrian Dead Reckoning", ETRI Journal, vol.32, no.6, pp.891-900, December 2010. DOI:
  7. I. Skog, P. Handel, J. O. Nilsson and J. Rantakokko, "Zero-Velocity Detection-An Algorithm Evaluation", IEEE Trans. On Biomedical Engineering, vol.57, no.11, pp.2657-2666, November, 2010. DOI:
  8. D. Alvarez, R. C. Gonzalez, A. Lopez and J. C. Alvarez, "Comparison of Step Length Estimators from Wearable Accelerometer Devices", Proc. of the 28th IEEE EMBS Annual International Conference, pp.5964-5967, August, 2006. DOI:
  9. W. Zijlstra and A. L. Hof, "Displacement of the pelvis during human walking: experimental data and model predictions", Gait & Posture, vol. 6, no. 3, p. 249, 1997. DOI:
  10. H. Weinberg, "Using the adxl202 in pedometer and personal navigation applications", Application Notes, American Devices, 2002.
  11. S. Cho and C. Park, "MEMS Based Pedestrian Navigation System", The Journal of Navigation, vol.59, pp.135-153, 2006. DOI:
  12. D. Villanueva, A. Trujillo, E. Fermon, E. Cardiel, and P. Hedz, "Method for Monitoring Acceleration of the Trunk During Gait", In Proc. of the Second Joint EMBS/BMES Conf., vol.2, pp.1758-1759, Oct. 2002.
  13. B. Auvinet, D. Chaleil and E. Barrey, "Accelerometric gait analysis for use in hospital outpatients", Rev. Rhum. Engl. Ed. vol.66, pp.389-397, Jul. 1999.
  14. S. P. Tseng, W. L. Li, C. Y. Sheng, J. W. Hsu and C. S. Chen, "Motion and attitude estimation using inertial measurements with complementary filter," Proc. of 2011 8th Asian Control Conference(ASCC),May,2011.
  15. L. Ojeda and J. Borenstein, "Personal Dead-Reckoning System for Gps-Denied Environments", IEEE International Workshop on Safety, Security and Rescue Robotics, pp. 1-6, Sep. 2007. DOI:
  16. S. W. Lee and K. Mase, "Activity and Location Recognition Using Wearable Sensors", IEEE Pervasive Computing, vol. 1, no. 3, pp. 24-32, 2002. DOI:
  17. S. P. Tseng, W. L. Li, C. Y. Sheng, J. W. Hsu and C. S. Chen, "Motion and attitude estimation using inertial measurements with complementary filter", Proc. of 2011 8th Asian Control Conference(ASCC),May,2011.