DOI QR코드

DOI QR Code

초임계 이산화탄소-지하수-제올라이트 시료 반응계에서의 지화학적 및 광물학적 변화에 관한 실험적 연구

Experimental Study on the Geochemical and Mineralogical Alterations in a Supercritical CO2-Groundwater-Zeolite Sample Reaction System

  • 박은두 (부경대학교 에너지자원공학과) ;
  • 왕수균 (부경대학교 에너지자원공학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Park, Eundoo (Department of Energy Resources Engineering, Pukyong National University) ;
  • Wang, Sookyun (Department of Energy Resources Engineering, Pukyong National University) ;
  • Lee, Minhee (Department of Earth Environmental Sciences, Pukyong National University)
  • 투고 : 2014.04.11
  • 심사 : 2014.06.19
  • 발행 : 2014.08.28

초록

본 연구에서는 지중 유입된 이산화탄소가 심부 지질구조 내 지하 환경에 미치는 지화학적 및 광물학적 영향을 규명하기 위한 일련의 고압셀 실험이 수행되었다. 실험을 통하여 이산화탄소 지중저장 조건에 해당하는 $50^{\circ}C$와 100 bar의 고온 고압조건을 고압셀 내에서 구현하고, 초임계 $CO_2$-지하수-광물 시스템 내에서의 반응 실험을 실시하였다. 반응 실험은 최근 국내 이산화탄소 지중저장의 후보지로서 많은 연구가 진행되고 있는 포항분지에 널리 분포하는 광물 중 하나인 제올라이트와 지하 800 m에서 채취된 심지층의 지하수를 대상으로 수행되었다. 상온 상압 및 고온 고압 환경에서 30일간 진행된 $CO_2$-지하수-제올라이트 반응으로 야기된 광물과 지하수 시료의 지화학적 및 광물학적 변화는 XRD, XRF, ICP-OES 등의 분석을 통해 정량적으로 규명하였다. 실험의 결과는 초임계 이산화탄소의 용해로 조성된 산성 환경에서 제올라이트 시료의 용해 반응이 촉진되었음을 보여 주었다. 제올라이트 시료로부터 용출된 양이온 농도가 증가함에 따라 지하수 내 $H^+$가 소모되고, 반응 10일 이후에는 지하수의 pH가 10.35 까지 증가하였다. 또한 제올라이트 시료의 용해 반응으로 인해 지하수 내 용존 양이온의 농도는 전반적으로 증가하는 경향을 보였으나, Si는 산성조건에서 비정질 규산염으로 재침전되고, Ca는 양이온 교환과 방해석으로의 재침전으로 농도가 감소한 것으로 나타났다. 실험 과정을 통하여 초임계 이산화탄소의 유입이 대수층 내 구성 광물의 용해 특성, 지하수의 화학적 조성과 물성, 대수층의 광물학적 조성 등에 변화를 발생시킬 수 있음을 보여주었다. 또한 광물상의 용해/침전과 양이온 교환 등 지화학적 반응들이 지중저장 관련 지층의 암석과 지하수의 물리적 또는 화학적 변화에 중요한 역할을 담당하고 있음을 보여주었다.

키워드

이산화탄소;제올라이트;고온.고압;지화학 반응;용해

과제정보

연구 과제 주관 기관 : 부경대학교

참고문헌

  1. Boait, F.C., White, N.J., Bickle, M.J., Chadwick, R.A., Neufeld, J.A. and Huppert, H.E. (2012) Spatial and temporal evolution of injected $CO_2$ at the Sleipner Field, North Sea. J. Geophys. Res., v.117, B03309, doi:10.1029/2011JB008603. https://doi.org/10.1029/2011JB008603
  2. Bachu, S. (2003) Screening and ranking of sedimentary basins for sequestration of $CO_2$ in geological media in response to climate change. Environ. Geol., v.44, p.277-289. https://doi.org/10.1007/s00254-003-0762-9
  3. Bachu, S. (2008) $CO_2$ storage in geological media: Role, means, status and barriers to deployment. Prog. Energ. Combust., v.34, p.254-273. https://doi.org/10.1016/j.pecs.2007.10.001
  4. Duan Z. and Sun R. (2003) An improved model calculating $CO_2$ solubility in pure water and aqueous NaCl solutions from 257 to 533 K and from 0 to 2000 bar. Chem. Geol., v.193, p.257-271. https://doi.org/10.1016/S0009-2541(02)00263-2
  5. Egawa, K., Hong, S.K., Lee, H.J., Choi, T.J., Lee, M.K., Kang, J.G., Yoo, K.C., Kim, J.C., Lee, Y.I., Kihm, J.H. and Kim, J.M. (2009) Preliminary evaluation of geological storage capacity of carbon dioxide in sandstones of the Sindong Group, Gyeongsang Basin (Cretaceous). J. Geol. Soc. Kor., v.45, p.463-472.
  6. Hong, S.K., Lee, H., Egawa, K., Choi, T., Lee, M.K., Yoo, K.C., Khim, J.H., Lee, Y.I. and Kim, J.M. (2009) Preliminary evaluation for carbon dioxide storage capacity of the Chungnam, Taebacksan, Mungyung and Honam basins. J. Geol. Soc. Kor., v.45, p.449-462.
  7. Im, J. and Im, G. (2006) Characteristics and Applications Technology of Zeolites. Naeha Publishing, Seoul, 335p.
  8. IPCC (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 442p.
  9. Kuhn, M., Tesmer, M., Pilz, P., Meyer, R., Reinicke, K., Forster, A., Kolditz, O., Schafer, D. and Clean-Partners (2012) CLEAN: project overview on $CO_2$ large-scale enhanced gas recovery in the Altmark natural gas field (Germany). Environ. Earth Sci., v.67, p.311-321. https://doi.org/10.1007/s12665-012-1714-z
  10. Kim, H., Song, I., Chang, C., Lee, H. and Kim, T. (2013) Relations between physical and mechanical properties of core samples from the Bukpyeong and Pohang basins. J. Engin. Geol., v.23, p.329-340. https://doi.org/10.9720/kseg.2013.4.329
  11. Kim, K.H. (1992) Clay Mineralogy - Fundamentals in Clay Mineralogy, Jochang Publishing, Seoul, 190p.
  12. Kim, Y., Lee, K., Jo, S., Kim, M., Kim, J.S. and Park, M.H. (2012) A preliminary evaluation on $CO_2$ storage capacity of the southwestern part of Ulleung basin, offshore, East sea. Econ. Environ. Geol., v.45, p.41-48. https://doi.org/10.9719/EEG.2012.45.1.041
  13. Middleton, R.S., Keating, G.N., Stauffer, P.H., Jordan, A.B., Viswanathan, H.S., Kang, Q.J., Carey, J.W., Mulkey, M.L., Sullivan, E.J., Chu, S.P., Espositod, R. and Meckel, T.A. (2012) The cross-scale science of $CO_2$ capture and storage: from pore scale to regional scale. Energ. Environ. Sci., v.5, p.7328-7345. https://doi.org/10.1039/c2ee03227a
  14. Noh, J. (1989) Zeolite minerals(I): Applied mineralogical characteristics. Miner. Sci. Ind., v.2, p.31-34.
  15. Noh, J. (2003) Study of utilization of natural zeolites as functional materials for water purification (I): Cation exchange property of domestic zeolites. J. Mineral. Soc. Kor., v.16, p.135-149.
  16. Park, J., Lee, M. and Wang, S. (2013) Study on the geochemical weathering process of sandstones and mudstones in Pohang Basin at $CO_2$ storage condition. Econ. Environ. Geol., v.46, p.221-234. https://doi.org/10.9719/EEG.2013.46.3.221
  17. Yoon, S. (2010) Tectonic history of the tertiary Yangnam and Pohang basins, Korea. J. Geol. Soc. Kor., v.46, p.95-110.
  18. Wang, S. (2009) Geological carbon sequestration: Now and After. KIC News, v.12, p.21-30.

피인용 문헌

  1. Thermodynamic Prediction of Groundwater-Rock Interaction Products around Underground Disposal Sites vol.48, pp.2, 2015, https://doi.org/10.9719/EEG.2015.48.2.131