Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea

한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용

  • Go, Ji-Su (Dept. of Earth & Environmental Sciences, Korea University) ;
  • Choi, Seon-Gyu (Dept. of Earth & Environmental Sciences, Korea University) ;
  • Kim, Chang Seong (Dept. of Earth & Environmental Sciences, Korea University) ;
  • Kim, Jong Wook (Dept. of Earth & Environmental Sciences, Korea University) ;
  • Seo, Jieun (Dept. of Earth & Environmental Sciences, Korea University)
  • 고지수 (고려대학교 지구환경과학과) ;
  • 최선규 (고려대학교 지구환경과학과) ;
  • 김창성 (고려대학교 지구환경과학과) ;
  • 김종욱 (고려대학교 지구환경과학과) ;
  • 서지은 (고려대학교 지구환경과학과)
  • Received : 2014.06.29
  • Accepted : 2014.08.28
  • Published : 2014.08.28


The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.


Pocheon;skarnification;sodic-calcic;magnesian(Mg);calcic;ore-forming environment;Na-Ca;Ca


Supported by : 연구재단


  1. Bowman, J.R. (1998) Basic aspects and applications of phase equilibria in the analysis of metasomatic Ca-Mg-Al-Fe-Si skarns. In Lentz, D.R. (ed.) Mineralized intrusionrelated skarn systems. Mineral. Assoc. Can., Short Course, v.26, p.1-49.
  2. Choi, S-.G. and Imai, N. (1993) Magnetite and scheelitebearing skarn in Ulsan mine, Korea. Jour. Korean Inst. Mining Geol., v.26, p.41-54.
  3. Frietsch, R., Tuisku, P., Martinsson, O. and Perdahl, J.A. (1997) Early proterozoic Cu(-Au) and Fe ore deposits associated with regional Na-Cl metasomatism in northern Fennoscandia. Ore Geology Reviews, v.12, p.1-34.
  4. Corriveau, L., Williams, P.J. and Mumin, H. (2010) Alteration vectors to IOCG mineralization: From uncharted terranes to deposits. In Corriveau, L. and Mumin, H. (eds.) Exploring for iron oxide copper-gold deposits: Canada and global analogues. Geological Association of Canada, Short Course Notes 20, p.89-110.
  5. Deer, W.A., Howie, R.A. and Zussman, J. (1992) An introduction to the rock forming minerals, 2nd ed., Longman, London, 696p.
  6. Droop, G.T.R. (1987) A general equation for estimating $Fe^{3+}$ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag., v.51, p.431-435.
  7. Go, J.S., Choi, S.-G., Seo, J., Park, J.-W. and Kim, S.-T. (2013) Skarn alteration in iron oxide-copper-gold systems the Pocheon magnetite deposit, Korea. In Jonsson, E. et al. (eds) Mineral deposit research for a high-tech world. 12th Biennial SGA Meeting Proceedings, v.3, p.1363-1365.
  8. Gordon, T.M. and Greenwood, H.J. (1971) The stability of grossularite in $H_2O-CO_2$ mixtures. Am. Mineralogist, v.56, p.1674-1688.
  9. Greenwood, H.J. (1967) Wollastonite: stability in $H_2O-CO_2$ mixtures and occurrence in a contact metamorphic aureole near Salmo, British Columbia, Canada. Am. Mineralogist, v.52, p.1669-1680.
  10. Harris, N.B. and Einaudi, M.T. (1982) Skarn deposits in the Yerington district, Nevada: metasomatic skarn evolution near Ludwig. Economic Geology, v.77, p.877-898.
  11. Hwang, J.H. and Kihm, Y.H. (2007) Geological report of the Jipori sheet (1/50,000). KIGAM, 54p.
  12. Kim. J.-N., Ree, J.-H., Kwon, S.T., Park, Y., Choi, S.-J. and Cheong, C.-S. (2000) The Kyonggi shear zone of the central Korean peninsula: late orogenic imprint of the North and South China collision. J. Geol., v.108, p.469-478.
  13. Kim, E-.J., Park, M-.E. and Seong K-.Y. (2009) Preliminary study of oxidized Au skarn model in the Geogo mine area to mineral exploration. Econ. Environ. Geol., v.42, p.289-300.
  14. Kim, C.S., Go, J.S., Choi, S-.G. and Kim, S-.T. (2014) Geology, mineralogy, and age of the Pocheon Fe(-Cu) skarn deposit, Korea. Econ. Environ. Geol., In press.
  15. Kim, H.S. (1977) Mineralogy and petrology of the Precambrian iron deposits, Korea. J. Geol. Soc. Korea, v.13, p.191-211.
  16. Leake, B.E., Woolley, A.R., Arpn, C.S., Birch, W.D., Gilbert, M.C., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G. (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist, v.35, p.219-246.
  17. Lee, S.R., Cho, M., Cheong, C.-S., Kim, H. and Ingate, M.T.D. (2003) Age, geochemistry, and tectonic significance of Neoproterozoic alkaline granitoids in the northwestern margin of the Gyeonggi massif, South Korea. Precambrian Res., v.122, p.297-310.
  18. Lee, S.H. (1979) Ore petrological studies on the genesis of the metamorphic iron deposits in southern Korea. Jour. Geol. Soc. Korea, v.15, p.210-229.
  19. Meinert, L.D. (1982) Skarn, manto, and breccia pipe formation in sedimentary rocks of the Cananea mining district, Sonora, Mexico. Economic Geology, v.77, p.919-949.
  20. Monteiro, L.V.S., Xavier, R.P., Carvalho, E.R., Hitzman, M.W., Johnson, C.A., de Souza Filho, C.R. and Torresi, L. (2008) Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide-copper-gold deposit, Carajas mineral province, Brazil: paragenesis and stable isotope constraints. Mineralium Deposita, v.43, p.129-159.
  21. Meinert, L.D. (1993) Skarn and skarn deposits. In Sheahan, P. and Cherry, M.E. (eds.) Ore deposit model volume II. Geoscience Canada, Reprint Series 6, p.117-134.
  22. Meinert, L.D. (1998) A review of skarns that contain gold. In Lentz, D.R. (ed.) Mineralized intrusion-related skarn systems. Mineral. Assoc. Can., Short Course, v.26, p.359-414.
  23. Meinert, L.D., Dipple, G.M. and Nicolescu, S. (2005) World skarn deposits. Economic Geology 100th Anniversary Volume, p.299-336.
  24. Morimoto, N. (1989) Nomenclature of pyroxenes. Can. Min, v.27, p.143-156.
  25. Nakano, T. (1998) Pyroxene geochemistry as an indicator for skarn metallogenesis in Japan. In Lentz, D.R. (ed.) Mineralized intrusion-related skarn systems. Mineral. Assoc. Can., Short Course, v.26, p.147-167.
  26. Nash, J.T. (1976) Fluid-inclusion petrology - data from porphyry copper deposits and applications to exploration. USGS, U.S. Goverment Printing Office, Washington, 16p.
  27. Newton, R.C. (1966) Some calc-silicate equilibrium relations. Am. Jour. Sci., v.264, p.204-222.
  28. Slaughter, J., Kerrick, D.M. and Wall, V.J. (1975) Experimental and thermodynamic study of equilibria in the system CaO-MgO-$SiO_2-H_2O-CO_2$. Am. Jour. Sci., v.275, p.143-162.
  29. Seo, J., Choi, S-.G., Kim, C.S., Park, J.W., Yoo, I.K. and Kim, N.H. (2007) The skarnification and Fe-Mo mineralization at lower part of Western Shinyemi Ore Body in Taeback area. J. Miner. Soc. Korea, v.20, p.35-46.
  30. So, C.S. (1977) Origin of amphibolite and associated magnetite ore from the Pocheon iron mine, Korea. In Klemm, D.D. and Schneider, H.-J. (eds.) Time- and strata-bound ore deposits, p.406-418.
  31. Torab, F.M. and Lehmann, B. (2007) Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineralogical Magazine, v.71, p.347-363.
  32. Wang, S. and Williams, P.J. (2001) Geochemistry and origin of Proterozoic skarns at the mount Elliott Cu-Au(-Co-Ni) deposit, Cloncurry district, NW Queensland, Australia. Mineralium Deposita, v.36, p.109-124.

Cited by

  1. Occurence of Zn-Pb Deposits in Danjang-Myeon, Milyang Area vol.28, pp.3, 2015,