Cyclooxygenase-2 Promoter 765C Increase of Digestive Tract Cancer Risk in the Chinese Population: a Meta-analysis

Yan-Song Xu¹, Bo Zhao², Chen-Yan Long³, Hui Li⁴, Xing Lu¹, Gang Liu⁴, Xiao-Zhun Tang⁴, Wei-Zhong Tang⁴**

Abstract

Background: To evaluate relationship between the cyclooxygenase-2 promoter 765G/C polymorphism and digestive cancer risk in China. Materials and Methods: A literature search through February 2014 was performed using PubMed, Chinese Biomedical Literature Database (CBM) and China National Knowledge Infrastructure (CNKI) databases, and a meta-analysis was performed with RevMan 5.2 software for odds ratios and 95% CIs. Results: In total, 9 articles with 3,263 cases and 4,858 controls were included in this meta-analysis. The pooled OR (95% CIs) in the co-dominant model (GC vs GG) was 1.56 [1.19, 2.06], and in the dominant model ((CC+GC) vs GG), the pooled OR was 1.59 [1.21, 2.09] in overall cancers. In the subgroup analysis, stratified by cancer type, significant associations were found that the-765C allele had increased pancreatic cancer and gastric risk. No significant liver cancer and colorectal cancer risk of COX-2 -765G/C polymorphism was found. Conclusions: These findings suggest that COX-2-765*C is related to cancer susceptibility and may increase gastric and pancreatic cancer risk.

Keywords: Digestive tract cancer - cyclooxygenase-2 - polymorphism - meta-analysis

Introduction

It has been suggested that environmental factors and genetic predisposition may affect the individual’s susceptibility and play an important role in the development of tumors (Cocos et al., 2012; Rubin et al., 2012; Arzumanyan et al., 2013; Hardbower et al., 2013), though the risk attributable to each is unclear. In recent years, a good many genes have been identified as potential digestive tract cancer susceptibility genes. An important one is Cyclooxygenase-2 (COX-2), which works as a multi-functional cytokine that plays a key role in cellular growth, proliferation (Wu et al., 2010) and differentiation (Rizzo et al., 2011), prognosis (Hedieh et al., 2013). So far several polymorphisms in the COX-2 gene have been reported and found to affect COX-2 protein expression. Among them, a functional single nucleotide polymorphism at the 765th nucleotide in the promoter region, with a G to C change, has been shown to vary greatly among different ethnic groups and may result in an altered transcriptional regulation and thereby influence the development and severity of COX-2-related diseases. As for -765G/C polymorphism of COX-2, conflicting results were reported, partially because of the relatively small sample size in each of the published studies. Therefore, we performed a meta-analysis of the published studies to derive a more precise estimation of the association between COX-2, 765G/C polymorphism and the digestive cancers susceptible risk.

Materials and Methods

Publication search

Relevant studies were identified by searching the electronic literature on PubMed, Chinese Biomedical Literature Database (CBM) and China National Knowledge Infrastructure (CNKI) using search terms (last search was updated on 1 January 2014) ‘Cyclooxygenase-2’ or ‘COX-2’, ‘polymorphism’ and ‘digestive tract cancer’ or ‘colorectal cancer’ or ‘gastric cancer’ or ‘pancreatic cancer’ or ‘liver cancer’. Only published studies with full text articles were included. When overlapping data of the same patient population were included in more than one publication, only the most recent or complete study was used in this meta- analysis.

Inclusion criteria

The inclusion criteria were (1) evaluation of COX-2 -765G/C polymorphism and digestive tract cancer risk; (2) case-control studies; (3) genotype frequency was available; (4) published in English or Chinese; (5) full-text articles. When overlapping data of the same patient

¹Department of Emergency, ²Department of General Surgery, ³Department of Colorectal and Anal, First Affiliated Hospital, Guangxi Medical University, Nanning, ⁴Department of General Surgery, Center Hospital, Zhuzhou, China ⁵Equal contributors

*For correspondence: tang6985@qq.com
population were included in more than one publication, only the most recent or complete study was used in this meta-analysis; (6) sufficient published data for estimating ORs with 95% CIs.

Data extraction
Two investigators (Bo Zhao and Hui Li) independently extracted data and reached a consensus on all of the items (Table 1). The following information was extracted from each enrolled references: first author, year of publication, numbers of cases and controls with the GC, CC and GG genotypes, tumor types, source of control, respectively.

Quantitative analysis
There was statistical significance (Table 2) among different genotypes. The main results of the meta-analysis are listed in Table 3. The association between COX-2-765 G/C polymorphism and cancer risk was estimated in two comparison models: a co-dominant model (GC vs GG) and a dominant model [(CC+GC) vs GG]. In the co-dominant model, we found associations of this SNP with cancer risk in overall cancer susceptibility (OR=1.56, 95% CI=[1.19, 2.06], p=0.001), gastric cancer (OR=1.75, 95% CI=[1.31, 2.32], p=0.0002), liver cancer (OR=1.03, 95% CI=[0.51, 2.07], p=0.94), colorectal cancer (OR=1.27, 95% CI=[0.62, 2.57], p=0.52), pancreatic cancer (OR=2.51, 95% CI=[1.73, 3.66], p<0.0001). In the dominant model, we found associations of this SNP with cancer risk in overall cancer susceptibility (OR=1.59, 95% CI=[1.21, 2.09], p=0.0008), gastric cancer (OR=1.76, 95% CI=[1.33, 2.33], p<0.0001), colorectal cancer (OR=1.47, 95% CI=[1.09, 1.98], p=0.01), liver cancer (OR=1.08, 95% CI=[0.49, 2.36], p=0.86), pancreatic cancer (OR=2.51, 95% CI=[1.73, 3.66], p<0.0001) (Figure 1-4).

Publication bias
Begg’s funnel plot and Egger’s test were conducted.
Figure 3. Forest Plots of Pancreatic Cancer Associated with COX-2 Gene Promoter -765G/C

Figure 4. Forest Plots of Gastric Cancer Associated with COX-2 Gene Promoter -765G/C

Results and Discussion

Although CRC human digestive carcinogenesis is a complex, multistep and multigenetic process. Cyclooxygenase-2, a key enzyme in arachidonic acid metabolism, is overexpressed in several epithelial malignancies. Analysis of potentially functional polymorphisms in candidate genes has emerged as a powerful approach in deciphering the complex relationship between genotype and phenotype. In this context, the present meta-analysis, including 3263 cases and 4853 controls from 9 published case-control studies (Tan et al., 2007; Xing et al., 2008; Xu et al., 2008; Zhang et al., 2009; Zhao et al., 2009; He et al., 2011; Zhang et al., 2011; Akkiz et al., 2011) in Chinese population, explored the role of genetic polymorphisms of the COX-2 promoter -765G/C in susceptibility to digestive tract cancers. Significant association between COX-2 -765G/C polymorphism and cancer genetic susceptibility, it is essential to design and perform scientific and rigorous studies with large sample sizes in the future. If confirmed in future studies, this genotype may be used by clinicians to select individuals for early diagnosis and treatments.

In spite of these limitation, our meta-analysis had several advantages. First, substantial number of cases and controls were pooled from different studies in China, which significantly increased the statistical power of the analysis. Second, no publication biases were detected, indicating that the whole pooled results may be unbiased. Although further research is needed, this present meta-analysis validates a significant association between COX-2 -765G/C variants and cancer genetic susceptibility, especially in gastric cancer, liver cancer and colorectal cancer in the Chinese population. To determine a precise association between the COX-2 -765G/C polymorphism and cancer genetic susceptibility, it is essential to design and perform scientific and rigorous studies with large sample sizes in the future. If confirmed in future studies, this genotype may be used by clinicians to select individuals for early diagnosis and treatments.

References

4566 *Asian Pacific Journal of Cancer Prevention, Vol 15, 2014*