DOI QR코드

DOI QR Code

Physioelectrochemical Investigation of Electrocatalytic Activity of Modified Carbon Paste Electrode in Alcohol Oxidation as Anode in Fuel Cell

Shabani-Shayeh, Javad;Ehsani, Ali;Jafarian, Majid

  • Received : 2014.03.10
  • Accepted : 2014.07.17
  • Published : 2014.08.31

Abstract

Methanol electro oxidation on the surface of carbon paste modified by $NiCl_2/6H_2O$ was studied in 1M NaOH by potentiostatic and potentiodynamic methods. Ni/C catalyst by the concentration of 5% Ni showed about twice higher electro catalytic activity than Ni metal. The amount of monolayer's on the surface of electrode is almost one order higher for Ni/C than Ni electrode. The kinetic parameters and the diffusion coefficient of methanol were derived from chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements.

Keywords

Methanol electro-oxidation;carbon paste;impedance;modified electrode

References

  1. A. Ehsani, M. G. Mahjani, and Jafarian, Synth Met., 161, 1760 (2011) https://doi.org/10.1016/j.synthmet.2011.06.020
  2. A. Ehsani A, M. G. Mahjani, and Jafarian (2012) Synth Met., 162, 199 (2012). https://doi.org/10.1016/j.synthmet.2011.11.032
  3. A. Ehsani, M. G. Mahjani, M. Jafarian, and A. Naeemy, Electrochim Acta., 71, 128 (2012). https://doi.org/10.1016/j.electacta.2012.03.107
  4. A. R. Feizbakhsh, A. Naeemy, A. Ehsani, A. Aghasi, and I. Danaee, J. Chiness Chem. Soc., 59, 1086 (2012) https://doi.org/10.1002/jccs.201100570
  5. A. Ehsani, S. Adeli, F. Babaei, H. Mostaanzadeh, M. Nasrollahzadeh (2014) J. Electroanal Chem., 713, 91 (2014). https://doi.org/10.1016/j.jelechem.2013.12.003
  6. A. Nozad Golikand, M. Asgari, M. Ghannadi Maragheh, and S. Shahrokhian, J. Electroanal Chem, 588, 155 (2006). https://doi.org/10.1016/j.jelechem.2005.11.033
  7. J. Raoof, A. Omrani, R. Ojani, and F. Monfared, J. Electroanal Chem, 633, 153 (2009). https://doi.org/10.1016/j.jelechem.2009.05.016
  8. R. Ojani, J. Raoof, and S. Fathi, J. Solid State Electr, 13, 927 (2009). https://doi.org/10.1007/s10008-008-0626-z
  9. R. Ojani, J. Raoof, and P. Salmany-Afagh, J. Electroanal Chem, 571, 1 (2004). https://doi.org/10.1016/j.jelechem.2004.03.032
  10. J. Taraszewska and G. Roslonek, J. Electroanal Chem, 364, 209 (1994). https://doi.org/10.1016/0022-0728(93)02919-9
  11. R. M. Van Effen and D. H Evans, J. Electroanal Chem., 103, 383 (1979). https://doi.org/10.1016/S0022-0728(79)80362-9
  12. A. J. Motheo, S. A. S. Machado, F. J. B. Rabelo, and Jr. Santos, J. Brazil Chim Soc, 5,161 (1994). https://doi.org/10.5935/0103-5053.19940028
  13. M. Fleischmann, K. Korinek, and D. Pletcher, J. Electroanal Chem, 31, 39 (1971). https://doi.org/10.1016/S0022-0728(71)80040-2
  14. A. A. El-Shafei, J. Electroanal Chem., 471, 89 (1999). https://doi.org/10.1016/S0022-0728(99)00235-1
  15. A. Hamnett, CATAL TODAY, 38, 445 (1997). https://doi.org/10.1016/S0920-5861(97)00054-0
  16. A. Ehsani, B. Jaleh, and M. Nasrollahzadeh, J. Power Sources, 257, 300 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.010
  17. M. Nasrollahzadeh, A. Ehsani, A. Rostami-Vartouni, Ultrasound Sonochem, 21, 275 (2014). https://doi.org/10.1016/j.ultsonch.2013.07.012
  18. A. Ehsani, F. Babaei, and M. Nasrollahzadeh, Applied Surface Science, 283, 1060 (2013). https://doi.org/10.1016/j.apsusc.2013.07.067
  19. A. Ehsani, M. G. Mahjani, M. Bordbar, S. Adeli, J. Electroanal. Chem., 710, 29 (2013). https://doi.org/10.1016/j.jelechem.2013.01.008
  20. M. Mahjani, A. Ehsani, M. Jafarian, SYNTH. METH, 160, 1252 (2010). https://doi.org/10.1016/j.synthmet.2010.03.019
  21. A. Ehsani, M. Nasrollahzadeh, MG. Mahjani, R. Moshrefi, H. Mostaanzadeh, J. Ind. Eng. Chem, doi:10.1016/ j.jiec.2014.01.045. https://doi.org/10.1016/j.jiec.2014.01.045
  22. A. Ehsani, M. G. Mahjani, R. Moshrefi, H. Mostaanzadeh, and J. Shabani Shayeh, RSC Adv., 4, 38, 20031 - 20037 (2014). https://doi.org/10.1039/c4ra01029a
  23. A. Ehsani, M. G. Mahjani, and M. Jafarian, Turkish Journal of Chemistry, 35, 1 (2011).
  24. A. Ehsani, M. G. Mahjani, M. Jafarian, A. Naeemy A, Progress Organic Coating, 69, 510 (2010). https://doi.org/10.1016/j.porgcoat.2010.09.007
  25. G. Cacciola, Antonucci V., and Freni S., J. Power Sources, 100, 67 (2001). https://doi.org/10.1016/S0378-7753(01)00884-9
  26. J. M. Andu' jar and F. Segura, Renew Sust Energ Rev, 13, 2309 (2009). https://doi.org/10.1016/j.rser.2009.03.015
  27. J. Ge and H. Liu, J. Power Sources, 142, 56 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.022
  28. I. Danaee, M. Jafarian, A. Mirzapoor, F. Gobal, M. G. Mahjani, Electrochim Acta, 55, 2093 (2010). https://doi.org/10.1016/j.electacta.2009.11.039
  29. G. Orozco, M. C. Perez, A. Rincon, and C. Gutierrez, (2000) J. Electro Anal Chem, 495, 71 (2000). https://doi.org/10.1016/S0022-0728(00)00396-X
  30. L. Jiang, A. Hsu, D. Chu, and R. Chen, Int J. Hydrogen Energ 35, 365 (2010). https://doi.org/10.1016/j.ijhydene.2009.10.058
  31. Xu Yuan hang, A. Amini, and M. Schell, J. Electroanal Chem, 398, 95 (1995). https://doi.org/10.1016/0022-0728(95)04227-6
  32. S. Berchmans, H. Gomathi, and G. PrabhakaraRao, J. Electroanal Chem, 394, 267 (1995). https://doi.org/10.1016/0022-0728(95)04099-A
  33. F. Vogel, J. L. DiNaro Blanchard, P. A. Marrone, S. F. Rice, P. A. Webley, W. A. Peters, K. A. Smith, J. W. Tester, J. Supercrit Fluid, 34, 249 (2005). https://doi.org/10.1016/j.supflu.2003.12.018
  34. I. Beceryk, S. Suzer, and F. Kadirgan, J. Electroanal Chem 502:118 (2001). https://doi.org/10.1016/S0022-0728(00)00541-6
  35. T. Okada, Arimuran, C. Ono, and M. Yuasa, Electrochim Acta, 51, 1130 (2005). https://doi.org/10.1016/j.electacta.2005.05.054
  36. H. Heli, M. Jafarian, M. G. Mahjani, and F. Gobal F, Electrochim Acta, 49, 4999 (2004). https://doi.org/10.1016/j.electacta.2004.06.015
  37. A. Aramata and W. Veerasai, Electrochim Acta, 36, 1043 (1991). https://doi.org/10.1016/0013-4686(91)85313-V
  38. C. H. Lee, C. W. Lee, D. I. Kim, D. H. Jung, C. S. Kim, and D. RyulShin, J. Power Sources, 86, 478 (2000). https://doi.org/10.1016/S0378-7753(99)00442-5
  39. W. Tokarz, H. Siwek, P. Piela, and A. Czerwinsky, Electrochim Acta, 52, 5565 (2007). https://doi.org/10.1016/j.electacta.2006.12.016
  40. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal, and M. G. Mahjani, Int. J. Hydrogen Energ, 34, 859 (2009). https://doi.org/10.1016/j.ijhydene.2008.10.067
  41. M. A. Abdel Rahim, R. M. Abdel Hameed, and M. W. Khalil, J. Power Sources, 134, 160 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.034

Cited by

  1. Effect of thickness on the capacitive behavior and stability of ultrathin polyaniline for high speed super capacitors vol.52, pp.10, 2016, https://doi.org/10.1134/S1023193516100128
  2. Physioelectrochemical investigation of the supercapacitive performance of a ternary nanocomposite by common electrochemical methods and fast Fourier transform voltammetry vol.39, pp.12, 2015, https://doi.org/10.1039/C5NJ01954K
  3. Physicoelectrochemical properties of facilely electrosynthesized reduced graphene oxide/p-type conductive polymer nanocomposite film vol.40, pp.3, 2016, https://doi.org/10.1039/C5NJ02969D
  4. Green Synthesized Cobalt Nano Particles for using as a Good Candidate for Sensing Organic Compounds vol.6, pp.4, 2015, https://doi.org/10.5229/JECST.2015.6.4.111
  5. Continuous fast Fourier transform admittance voltammetry as a new approach for studying the change in morphology of polyaniline for supercapacitors application vol.5, pp.102, 2015, https://doi.org/10.1039/C5RA11962F
  6. Electrochemical study of supercapacitor performance of polypyrrole ternary nanocomposite electrode by fast Fourier transform continuous cyclic voltammetry vol.5, pp.116, 2015, https://doi.org/10.1039/C5RA18694C
  7. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors vol.353, 2015, https://doi.org/10.1016/j.apsusc.2015.06.066
  8. A novel route for electrosynthesis of CuCr 2 O 4 nanocomposite with p-type conductive polymer as a high performance material for electrochemical supercapacitors vol.496, 2017, https://doi.org/10.1016/j.jcis.2017.02.010
  9. Electrochemical properties, optical modeling and electrocatalytic activity of pulse-electropolymerized ternary nanocomposite of poly (methylene blue) in aqueous solution vol.215, 2016, https://doi.org/10.1016/j.molliq.2015.12.023