Trifluoropropyltrimethoxysilane as an Electrolyte Additive to Enhance the Cycling Performances of Lithium-Ion Cells

Trifluoropropyltrimethoxysilane 전해질 첨가제를 이용한 리튬이온전지의 싸이클 특성 향상

  • Shin, Won-Kyung (Department of Chemical Engineering, Hanyang University) ;
  • Park, Se-Mi (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Dong-Won (Department of Chemical Engineering, Hanyang University)
  • Received : 2014.07.03
  • Accepted : 2014.07.19
  • Published : 2014.08.31


In this study, we tried to improve the cycling performance of lithium-ion batteries by suppressing decomposition of the electrolyte solution containing fluorsilane-based additive. Trifluoropropyltrimethoxysilane was electrochemically oxidized and reduced prior to the decomposition of the liquid electrolyte composed of lithium salt and carbonate-based organic solvent. Thus, the stable solid electrolyte interphase (SEI) layer on both negative electrode and positive electrode was formed, and it was confirmed that the cycling performance of lithium-ion batteries assembled with electrolyte solution containing 5 wt.% trifluoropropyltrimethoxysilane was the mostly enhanced. The products formed on electrodes were analyzed by the SEM and XPS analysis, and it was demonstrated that trifluoropropyltrimethoxysilane can be one of the promising SEI-forming additives.


Supported by : 한국에너지기술평가원(KETEP)


  1. K. Xu, 'Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries' Chem. Rev., 104, 4303 (2004).
  2. E. Peled, 'The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems - The Solid Electrolyte Interphase Model' J. Electrochem. Soc., 126, 2047 (1979).
  3. K. Xu and A. von Cresce, 'Interfacing electrolytes with electrodes in Li ion batteries' J. Mater. Chem., 21, 9849 (2011).
  4. S. S. Zhang, 'A review on electrolyte additives for lithium-ion batteries' J. Power Sources, 162, 1379 (2006).
  5. D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider, 'On the use of vinylene carbonate as an additive to electrolyte solutions for Li-ion batteries' Electrochim. Acta, 47, 1423 (2002).
  6. L. El Ouatani, R. Dedryvere, C. Siret, P. Biensan, S. Reynaud, P. Iratcabal, and D. Gonbeau, 'The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries' J. Electrochem. Soc., 156, A103 (2009).
  7. I. A. Profatilova, S.-S. Kim, and N.-S. Choi, 'Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate' Electrochim. Acta, 54, 4445 (2009).
  8. L. Liao, P. Zuo, Y. Ma, Y. An, G. Yin, and Y. Gao, 'Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode' Electrochim. Acta, 74, 260 (2012).
  9. A. Norbert and W. Johann, "Organosilicon Chemistry VI", 770, Wiley-VCH Verlag GmbH, Germany (2008).
  10. G. Schroeder, B. Gierczyk, D. Waszak, M. Kopczyk, and M. Walkowiak, 'Vinyl tris-2-methoxyethoxy silane - A new class of film-forming electrolyte components for Liion cells with graphite anodes' Electrochem. Commun., 8, 523 (2006).
  11. G. Schroeder, B. Gierczyk, D. Waszak, and M. Walkowiak, 'Impact of ethyl tris-2-methoxyethoxy silane on the passivation of graphite electrode in Li-ion cells with PC-based electrolyte' Electrochem. Commun., 8, 1583 (2006).
  12. Q. Xia, B. Wang, Y. P. Wu, H. J. Luo, S. Y. Zhao, and T. van Ree, 'Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries' J. Power Sources, 180, 602 (2008).
  13. Y. M. Lee, J. E. Seo, Y.-G. Lee, S. H. Lee, K. Y. Cho, and J.-K. Park, 'Effects of Triacetoxyvinylsilane as SEI Layer Additive on Electrochemical Performance of Lithium Metal Secondary Battery' Electrochem. Solid-State Lett., 10, A216 (2007).
  14. Y. G. Ryu, S. Lee, S. Mah, D. J. Lee, K. Kwon, S. Hwang, and S. Doo, 'Electrochemical Behaviors of Silicon Electrode in Lithium Salt Solution Containing Alkoxy Silane Additives' J. Electrochem. Soc., 155, A583 (2008).
  15. S. W. Song and S.-W. Baek, 'Silane-Derived SEI Stabilization on Thin-Film Electrodes of Nanocrystalline Si for Lithium Batteries' Electrochem. Solid-State Lett., 12, A23 (2009).
  16. L.L. Li, L.Li, B. Wang, L.L. Liu, Y.P. Wu, T. van Ree, and K.A. Thavhiwa, 'Methyl phenyl bismethoxydiethoxysilane as bi-functional additive to propylene carbonate-based electrolyte for lithium ion batteries' Electrochim. Acta, 56, 4858 (2011).
  17. H. P. Zhang, Q. Xia, B. Wang, L. C. Yang, Y. P. Wu, D. L. Sun, C. L. Gan, H. J. Luo, A. W. Bebeda, and T. v. Ree, 'Vinyl-Tris-(methoxydiethoxy)silane as an effective and ecofriendly flame retardant for electrolytes in lithium ion batteries' Electrochem. Commun., 11, 526 (2009).
  18. S. U. Woo, C. S. Yoon, K. Amine, I. Belharouak, and Y. K. Sun, 'Significant improvement of electrochemical performance of $AlF_3$-coated Li[$Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ cathode materials' J. Electrochem. Soc., 154, A1005 (2007).
  19. S. Y. Bae, E. G. Shim, and D. W. Kim, 'Effect of ionic liquid as a flame-retarding additive on the cycling performance and thermal stability of lithium-ion batteries' J. Power Sources, 244, 266 (2013).
  20. S. Y. Bae, W. K. Shin, and D. W. Kim, 'Protective organic additives for high voltage $LiNi_{0.5}Mn_{1.5}O_4$ cathode materials' Electrochim. Acta, 125, 497 (2014).
  21. S. Leroy, F. Blanchard, R. Dedryvere, H. Martinez, B. Carre, D. Lemordant, and D. Gonbeau, 'Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study' Surf. Interface Anal., 37, 773 (2005).
  22. P. Verma, P. Maire, and P. Novak, 'A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries' Electrochim. Acta, 55, 6332 (2010).
  23. I. Milosev, Z. Jovanovic, J. B. Bajat, R. Jancic-Heinemann, and V. B. Miskovic-Stankovic, 'Surface Analysis and Electrochemical Behavior of Aluminum Pretreated by Vinyltriethoxysilane Films in Mild NaCl Solution' J. Electrochem. Soc., 159, C303 (2012).