DOI QR코드

DOI QR Code

Determination of Sperm Sex Ratio in Bovine Semen Using Multiplex Real-time Polymerase Chain Reaction

  • Khamlor, Trisadee ;
  • Pongpiachan, Petai ;
  • Sangsritavong, Siwat ;
  • Chokesajjawatee, Nipa
  • Received : 2014.03.27
  • Accepted : 2014.06.01
  • Published : 2014.10.01

Abstract

Gender selection is important in livestock industries; for example, female calves are required in the dairy industry. Sex-sorted semen is commonly used for the production of calves of the desired gender. However, assessment of the sex ratio of the sorted semen is tedious and expensive. In this study, a rapid, cost effective and reliable method for determining the sex ratio was developed using a multiplex real-time polymerase chain reaction (PCR) assay. In this assay, the X and Y chromosome-specific markers, i.e., bovine proteolipid protein (PLP) gene and sex-determining region Y (SRY) were simultaneously quantified in a single tube. The multiplex real-time PCR assay was shown to have high amplification efficiencies (97% to 99%) comparable to the separated-tube simplex real-time PCR assay. The results obtained from both assays were not significantly different (p>0.05). The multiplex assay was validated using reference DNA of known X ratio (10%, 50%, and 90%) as templates. The measured %X in semen samples were the same within 95% confidence intervals as the expected values, i.e., >90% in X-sorted semen, <10% in Y-sorted semen and close to 50% in the unsorted semen. The multiplex real-time PCR assay as shown in this study can thus be used to assess purity of sex-sorted semen.

Keywords

Sperm Sex Ratio;Sex Determination;Sexed Semen;Multiplex Real-time polymerase chain reaction

References

  1. Wolf, C. A., K. E. Brass, M. I. B. Rubin, S. E. Pozzobon, F. D. Mozzaquatro, and F. D. De La Corte. 2008. The effect of sperm selection by Percoll or swim-up on the sex ratio of in vitro produced bovine embryos. Anim. Reprod. 5:110-115.
  2. Yun, J. J., L. E. Heisler, I. I. L. Hwang, O. Wilkins, S. K. Lau, M. Hyrcza, B. Jayabalasingham, J. Jin, J. McLaurin, M.-S. Tsao, and S. D. Der. 2006. Genomic DNA functions as a universal external standard in quantitative real-time PCR. Nucl. Acids Res. 34:e85. https://doi.org/10.1093/nar/gkl400
  3. Machado, G. M., J. O. Carvalho, E. S. Filho, E. S. Caixeta, M. M. Franco, R. Rumpf, and M. A. N. Dode. 2009. Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos. Theriogenology 71:1289-1297. https://doi.org/10.1016/j.theriogenology.2009.01.002
  4. Madrid-Bury, N., R. Fernandez, A. Jimenez, S. Perez-Garnelo, P. Nuno Moreira, B. Pintado, J. de la Fuente, and A. Gutierrez-Adan. 2003. Effect of ejaculate, bull, and a double swim-up sperm processing method on sperm sex ratio. Zygote 11:229-235. https://doi.org/10.1017/S0967199403002272
  5. Morrell, J. M., K. D. Keeler, D. E. Noakes, N. M. Mackenzie, and D. W. Dresser. 1988. Sexing of sperm by flow cytometry. Vet. Rec. 122:322-324. https://doi.org/10.1136/vr.122.14.322
  6. Parati, K., G. Bongioni, R. Aleandri, and A. Galli. 2006. Sex ratio determination in bovine semen: A new approach by quantitative real time PCR. Theriogenology 66:2202-2209. https://doi.org/10.1016/j.theriogenology.2006.07.007
  7. Piumi, F., D. Vaiman, E.-P. Cribiu, B. Guerin, and P. Humblot. 2001. Specific cytogenetic labeling of bovine spermatozoa bearing X or Y chromosomes using fluorescent in situ hybridization (FISH). Genet. Sel. Evol. 33:89-98. https://doi.org/10.1186/1297-9686-33-1-89
  8. Rens, W., F. Yang, G. Welch, S. Revell, P. C. O'Brien, N. Solanky, L. A. Johnson, and M. A. F. Smith. 2001. An XY paint set and sperm FISH protocol that can be used for validation of cattle sperm separation procedures. Reproduction 121:541-546. https://doi.org/10.1530/rep.0.1210541
  9. Sang, L., W. C. Yang, L. Han, A. X. Liang, G. H. Hua, J. J. Xiong, L. J. Huo, and L. G. Yang. 2011. An immunological method to screen sex-specific proteins of bovine sperm. J. Dairy Sci. 94:2060-2070. https://doi.org/10.3168/jds.2010-3350
  10. Seidel Jr, G. E. 2007. Overview of sexing sperm. Theriogenology 68:443-446. https://doi.org/10.1016/j.theriogenology.2007.04.005
  11. Wang, D., H. Zhu, J. Guo, B. Lin, L. Zhang, H. Hao, W. Du, and X. Zhao. 2011. A study of a method to assess the purity of sorted bovine semen using rapid single-sperm sexing PCR. J. Anim. Vet. Adv. 10:750-756. https://doi.org/10.3923/javaa.2011.750.756
  12. Colley, A., M. Buhr, and S. P. Golovan. 2008. Single bovine sperm sex typing by amelogenin nested PCR. Theriogenology 70:978-983. https://doi.org/10.1016/j.theriogenology.2008.05.060
  13. Garner, D. L., K. M. Evans, and G. E. Seidel. 2013. Sex-sorting sperm using flow cytometry/cell sorting. Methods Mol. Biol. 927:279-295. https://doi.org/10.1007/978-1-62703-038-0_26
  14. Garner, D. L. and G. E. Seidel Jr. 2003. Past, present and future perspectives on sexing sperm. Can. J. Anim. Sci. 83:375-384. https://doi.org/10.4141/A03-022
  15. Habermann, F. A., A. Winter, I. Olsaker, P. Reichert, and R. Fries. 2005. Validation of sperm sexing in the cattle (Bos taurus) by dual colour fluorescence in situ hybridization. J. Anim. Breed. Genet. 122:22-27. https://doi.org/10.1111/j.1439-0388.2005.00488.x
  16. Hendriksen, P. J. M., M. Tieman, T. Van Der Lende, and L. A. Johnson. 1993. Binding of anti-.H-Y monoclonal antibodies to separated X and Y chromosome bearing porcine and bovine sperm. Mol. Reprod. Dev. 35:189-196. https://doi.org/10.1002/mrd.1080350213
  17. Lee, J. H., J. H. Park, S.-H. Lee, C. S. Park, and D. I. Jin. 2004. Sexing using single blastomere derived from IVF bovine embryos by fluorescence in situ hybridization (FISH). Theriogenology 62:1452-1458. https://doi.org/10.1016/j.theriogenology.2004.02.012
  18. Blecher, S. R., R. Howie, S. Li, J. Detmar, and L. M. Blahut. 1999. A new approach to immunological sexing of sperm. Theriogenology 52:1309-1321. https://doi.org/10.1016/S0093-691X(99)00219-8