DOI QR코드

DOI QR Code

Genetic Relationships of Carcass Traits with Retail Cut Productivity of Hanwoo Cattle

  • Koh, Daeyoung ;
  • Lee, Jeongkoo ;
  • Won, Seunggun ;
  • Lee, Chaeyoung ;
  • Kim, Jongbok
  • Received : 2014.03.05
  • Accepted : 2014.06.21
  • Published : 2014.10.01

Abstract

This study aimed to estimate genetic correlation between carcass grading and retail productivity traits and to estimate the correlated response on retail productivity traits through selection for carcass grading traits in order to assess the efficacy of indirect selection. Genetic parameters were estimated with the data from 4240 Hanwoo steers using mixed models, and phenotypes included carcass weight (CWT), back fat thickness (BFT), eye muscle area (EMA), marbling (MAR), and estimated lean yield percentage (ELP) as the carcass grading traits, and weight and portion of retail cuts (RCW and RCP), trimmed fats (TFW and TFP) and trimmed bones (TBW and TBP) as the lean productivity traits. The CWT had positive genetic correlations with RCW (0.95) and TFW (0.73), but its genetic correlation with RCP was negligible (0.02). The BFT was negatively correlated with RCP (-0.63), but positively correlated with TFW and TFP (0.77 and 0.70). Genetic correlations of MAR with TFW and TFP were low. Among the carcass grading traits, only EMA was positively correlated with both RCW (0.60) and RCP (0.72). The EMA had a relatively strong negative genetic correlation with TFW (-0.64). The genetic correlation coefficients of ELP with RCP, TFW, and TFP were 0.76, -0.90, and -0.82, respectively. These correlation coefficients suggested that the ELP and EMA might be favorable traits in regulating lean productivity of carcass.

Keywords

Correlated Response;Indirect Selection;Genetic Parameters;Mixed Model

References

  1. Wheeler, T. L., L. V. Cundiff, R. M. Koch, M. E. Dikeman, and J. D. Crouse. 1997. Characterization of biological types of cattle (Cycle IV): Wholesale, subprimal, and retail product yields. J. Anim. Sci. 75:2389-2403.
  2. Wheeler, T. L., L. V. Cundiff, S. D. Shackelford, and M. Koohmaraie. 2004. Characterization of biological types of cattle (Cycle VI): Carcass, yield, and longissimus palatability traits. J. Anim. Sci. 82:1177-1189.
  3. Won, J., J. Kim, and J. Lee. 2010. Evaluation of genetic ability for meat quality in Hanwoo cow. J. Anim. Technol. (Kor). 52:259-264 (In Korean). https://doi.org/10.5187/JAST.2010.52.4.259
  4. Pabiou, T., W. F. Fikse, A. Nasholm, A. R. Cromie, M. J. Drennan, M. G. Keane, and D. P. Berry. 2009. Genetic parameters for carcass cut weight in Irish beef cattle. J. Anim. Sci. 87:3865-3876. https://doi.org/10.2527/jas.2008-1510
  5. Reverter, A., D. J. Johnston, H. U. Graser, M. L. Wolcott, and W. H. Upton. 2000. Genetic analyses of live-animal ultrasound and abattoir carcass traits in Australian Angus and Hereford cattle. J. Anim. Sci. 78:1786-1795.
  6. Rios-Utrera, A. and L. D. Van Vleck. 2004. Heritability estimates for carcass traits of cattle. A review. Gen. Mol. Res. 3:380-394.
  7. Rios-Utrera, A., L. V. Cundiff, K. E. Gregory, R. M. Koch, M. E. Dikeman, M. Koohmaraie, and L. D. Van Vleck. 2005. Genetic analysis of carcass traits of steers adjusted to age, weight, or fat thickness slaughter endpoints. J. Anim. Sci. 83:764-776.
  8. Shackelford, S. D., M. Koohmaraie, L. V. Cundiff, K. E. Gregory, G. A. Rohrer, and J. W. Savell. 1994. Heritabilities and phenotypic and genetic correlations for bovine postrigorcalpastatin activity, intramuscular fatcontent, Warner-Bratzler shear force, retail product yield, and growth rate. J. Anim. Sci. 72:857-863.
  9. Shackelford, S. D., L. V. Cundiff, K. E. Gregory, and M. Koohmaraie. 1995. Predicting beef carcass cutability. J. Anim. Sci. 73:406-413.
  10. Splan, R. K., L. V. Cundiff, and L. D. Van Vleck. 1998. Genetic parameters for sex-specific traits in beef cattle. J. Anim. Sci. 76:2272-2278.
  11. Toral, F. L. B., V. M. Roso, C. V. D. Arujo, and J. C. R. Filho. 2011. Genetic parameters and response to selection for post-weaning weight gain, visual scores and carcass traits in Hereford and Hereford×Nellore cattle. Livest. Sci. 137:231-237. https://doi.org/10.1016/j.livsci.2010.11.013
  12. Kim, J., C. Lee, T. Tsuyuki, T. Shimogiri, S. Okamoto, and Y. Maeda. 2006. Sire-maternal grandsire model and sire model in estimation of genetic parameters for average daily gain and carcass traits of Japanese Black cattle. Asian Australas. J. Anim. Sci. 19:1678-1684. https://doi.org/10.5713/ajas.2006.1678
  13. Kim, J., D. Kim, J. Lee, and C. Lee. 2010. Genetic relationship between carcass traits and carcass price of Korean cattle. Asian Australas. J. Anim. Sci. 23:848-854. https://doi.org/10.5713/ajas.2010.90555
  14. Koch, R. M. 1978. Selection in beef cattle. III. Correlated response of carcass traits to selection for weaning weight, yearling weight and muscling score in cattle. J. Anim. Sci. 47:142-150.
  15. Koch, R. M., L. V. Cundiff, and K. E. Gregory. 1982. Heritabilities and genetic, environmental and phenotypic correlations of carcass traits in a population of diverse biological types and their implications in selection programs. J. Anim. Sci. 55:1319-1329.
  16. Marshall, D. M. 1994. Breed differences and genetic parameters for body composition traits in beef cattle. J. Anim. Sci. 72:2745-2755.
  17. Meyer, K. 2006. WOMBAT - A program for mixed model analyses by restricted maximum likelihood. User notes. Animal Genetics and Breeding Unit, Armidale, Australia.
  18. Ministry of Agriculture, Food and Rural Affairs. 2007. The grading standards for livestock products. Official announcement 2000-20 (In Korean).
  19. Morris, C. A., N. G. Cullen, and D. G. McCall. 1999. Genetic and phenotypic relationships among carcass measurements in beef cattle. NZ J. Agric. Res. 42:415-421. https://doi.org/10.1080/00288233.1999.9513390
  20. Oliver, W. J., M. A. Snyman, J. J. Olivier, J. B. van Wyk, and G. J. Erasmus. 2001. Direct and correlated responses to selection for total weight of lamb weaned in Merino sheep. South Afr. J. Anim. Sci. 31:115-121.
  21. Oyama, K. 2011. Genetic variability of Wagyu cattle estimated by statistical approaches. Anim. Sci. J. 82:367-373. https://doi.org/10.1111/j.1740-0929.2011.00895.x
  22. Bourdon, R. M. 2000. Understanding Animal Breeding. Prentice-Hall Inc. New Jersey 07458, USA.
  23. Choy, Y. H., H. B. Yoon, S. B. Choi, and H. W. Jung. 2005. Genetic analysis of carcass traits in Hanwoo with different slaughter end-points. J. Anim. Sci. Technol. (Kor.). 47:703-710 (In Korean). https://doi.org/10.5187/JAST.2005.47.5.703
  24. Crews, D. H. Jr. and R. A. Kemp. 2001. Genetic parameters for ultrasound and carcass measures of yield and quality among replacement and slaughter beef cattle. J. Anim. Sci. 79:3008-3020.
  25. Crews, D. H. Jr., R. M. Enns, J. M. Rumph, and E. J. Pollak. 2008. Genetic evaluation of retail product percentage in Simmental cattle. J. Anim. Breed. Genet. 125:13-19. https://doi.org/10.1111/j.1439-0388.2007.00695.x
  26. Falconer, D. S. 1989. Introduction to Quantitative Genetics. Longman Group Ltd., Essex CM20 2JE, England.
  27. Gregory, K. E., L. V. Cundiff, R. M. Koch, M. E. Dikeman, and M. Koohmaraie. 1994. Breed effects, retained heterosis, and estimates of genetic and phenotypic parameters for carcass and meat traits of beef cattle. J. Anim. Sci. 72:1174-1183.
  28. Gregory, K. E., L. V. Cundiff, and R. M. Koch. 1995. Genetic and phenotypic (co)variances for growth and carcass traits of purebred and composite populations of beef cattle. J. Anim. Sci. 73:1920-1926.
  29. Grion, A. L., M. E. Mercadante, J. N. S. G. Cyrillo, S. F. M. Bonilha, E. Magnani, and R. H. Branco. 2014. Selection for feed efficiency traits and correlated genetic responses in feed intake and weight gain of Nellore cattle. J. Anim. Sci. 92:955-965. https://doi.org/10.2527/jas.2013-6682
  30. Hwang, J. M., S. Kim, Y. H. Choy, H. B. Yoon, and C. J. Park. 2008. Genetic parameter estimation of carcass traits of Hanwoo steers. J. Anim. Sci. Technol. (Kor.). 50:613-620 (in Korean). https://doi.org/10.5187/JAST.2008.50.5.613
  31. Kim, J. B. and C. Lee. 2000. Historical look at the genetic improvement in Korean cattle. Asian Australas. J. Anim. Sci. 13:1467-1481. https://doi.org/10.5713/ajas.2000.1467
  32. Bergen, R., S. P. Miller, J. W. Wilton, D. H. Jr. Crews, and I. B. Mandell. 2006a. Genetic correlations between live yearling bull and steer carcass traits adjusted to different slaughter end points. 1. Carcass lean percentage. J. Anim. Sci. 84:546-557.
  33. Bergen, R., S. P. Miller, J. W. Wilton, and I. B. Mandell. 2006b. Genetic correlations between live yearling bull and steer carcass traits adjusted to different slaughter end points. 2. Carcass fat partitioning. J. Anim. Sci. 84:558-566.
  34. Bertrand, J. K., R. D. Green, W. O. Herring, and D. W. Moser. 2001. Genetic evaluation for beef carcass traits. J. Anim. Sci. 79:E190-E200.

Cited by

  1. Prediction of Carcass Composition Using Carcass Grading Traits in Hanwoo Steers vol.29, pp.9, 2015, https://doi.org/10.5713/ajas.15.0754
  2. Genetic Parameter Estimates of Carcass Traits under National Scale Breeding Scheme for Beef Cattle vol.29, pp.8, 2016, https://doi.org/10.5713/ajas.15.0696
  3. Carcass Characteristics and Primal Cuts Yields by Live Weight of Hanwoo Steers in Gyeongbuk Province vol.52, pp.2, 2018, https://doi.org/10.14397/jals.2018.52.2.151