DOI QR코드

DOI QR Code

Identification of Exonic Nucleotide Variants of the Thyroid Hormone Responsive Protein Gene Associated with Carcass Traits and Fatty Acid Composition in Korean Cattle

  • Oh, Dong-Yep (Livestock Research institute) ;
  • Lee, Yoon-Seok (Institute of Green Bio Science and Technology, Seoul National University) ;
  • La, Boo-Mi (School of Biotechnology, Yeungnam University) ;
  • Lee, Jea-Young (Department of Statistics, Yeungnam University) ;
  • Park, Yong-Soo (Department of Equine Industry, Korea National College of Agriculture and Fisheries) ;
  • Lee, Ji-Hong (Gyeongbuk Provincial College) ;
  • Ha, Jae-Jung (Livestock Research institute) ;
  • Yi, Jun-Koo (Livestock Research institute) ;
  • Kim, Byung-Ki (Livestock Research institute) ;
  • Yeo, Jung-Sou (School of Biotechnology, Yeungnam University)
  • Received : 2014.02.12
  • Accepted : 2014.05.06
  • Published : 2014.10.01

Abstract

The thyroid hormone responsive protein (THRSP) gene is a functional gene that can be used to indicate the fatty acid compositions. This study investigates the relationships of exonic single nucleotide polymorphisms (SNPs) in the THRSP gene and fatty acid composition of muscle fat and marbling score in the 612 Korean cattle. The relationships between fatty acid composition and eight SNPs in the THRSP gene (g.78 G>A, g.173 C>T, g.184 C>T, g.190 C>A, g.194 C>T, g.277 C>G, g.283 T>G and g.290 T>G) were investigated, and according to the results, two SNPs (g.78 G>A and g.184 C>T) in exon 1 were associated with fatty acid composition. The GG and CC genotypes of g.78 G>A and g.184 C>T had higher unsaturated fatty acid (UFA) and monounsaturated fatty acid (MUFA) content (p<0.05). In addition, the $ht1^*ht1$ group (Val/Ala haplotype) in a linkage disequilibrium increased MUFAs and marbling scores for carcass traits (p<0.05). As a result, g.78 G>A and g.184 C>T had significantly relationships with UFAs and MUFAs. Two SNPs in the THRSP gene affected fatty acid composition, suggesting that GG and CC genotypes and the $ht1^*ht1$ group (Val/Ala haplotype) can be markers to genetically improve the quality and flavor of beef.

Keywords

Thyroid Hormone Responsive Protein (THRSP) Gene;Unsaturated Fatty Acid;SNP;Beef Flavor;Korean Cattle

Acknowledgement

Supported by : Yeungnam University

References

  1. Melton, S. L., M. Amiri, G. W. Davis, and W. R. Backus. 1982. Flavor and chemical characteristics of ground beef from grass-, forage-grain- and grain-finished steers. J. Anim. Sci. 55:77-87.
  2. Harvatine, K. J. and D. E. Bauman. 2006. SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr. 136:2468-2474.
  3. Hoashi, S., T. Hinenoya, A. Tanaka, H. Ohsaki, H. Sasazaki, M. Taniguchi, K. Oyama, F. Mukai, and H. Mannen. 2008. Association between fatty acid compositions and genotypes of FABP4 and LXR-alpha in Japanese Black cattle. BMC Genet. 9:84.
  4. Jump, D. B. and J. H. Oppenheimer. 1985. High basal expression and 3,5,3'-triiodothyronine regulation of messenger ribonucleic acid S14 in lipogenic tissues. Endocrinology 117: 2259-2266. https://doi.org/10.1210/endo-117-6-2259
  5. Kim, J. H., C. H. Kim, and Y. D. Ko. 2002. Influence of dietary addition of dried wormwood (Artemisia sp.) of the performance and carcass characteristics of Hanwoo steers and the nutrient digestibility of sheep. Asian Australas. J. Anim. Sci. 15:390-395. https://doi.org/10.5713/ajas.2002.390
  6. LaFave, L. T., L. B. Augustin, and C. N. Mariash. 2006. S14: Insights from knockout mice. Endocrinology 147:4044-4047. https://doi.org/10.1210/en.2006-0473
  7. Lee, S. H., D. H. Yoon, S. H. Hwang, E. Y. Cheong, O. H. Kim, and C. S. Lee. 2004. Relationship between monounsaturated fatty acid composition and stearoyl-CoA desaturase mRNA level in Hanwoo liver and loin muscle. J. Anim. Sci. Technol. (Kor) 46:7-14. https://doi.org/10.5187/JAST.2004.46.1.007
  8. Lee, M. A., O. M. Keane, B. C. Glass, T. R. Manley, N. G. Cullen, K. G. Dodds, A. F. McCulloch, C. A. Morris, M. Schreiber, J. Warren, A. Zadissa, T. Wilson, and J. C. McEwan. 2006. Establishment of a pipeline to analyse non-synonymous SNPs in Bos Taurus. BMC Genom. 7:298. https://doi.org/10.1186/1471-2164-7-298
  9. Mancini, G., E. L. Nicolazzi, A. Valentini, G. Chillemi, P. A. Marsan, E. Santus, and L. Pariset. 2013. Association between single nucleotide polymorphisms (SNPs) and milk production traits in Italian Brown cattle. Livest. Sci. 157:93-99. https://doi.org/10.1016/j.livsci.2013.07.008
  10. Smith, S. B., A. Yang, T. W. Larsen, and R. K. Tume. 1998. Positional analysis of triacylglycerols from bovine adipose tissue lipids varying in degree of unsaturation. Lipids 33:197-207. https://doi.org/10.1007/s11745-998-0196-8
  11. Smith, S. B., C. A. Gill, D. K. Lunt, and M. A. Brooks. 2009. Regulation of fat and fatty acid composition in beef cattle. Asian Australas. J. Anim. Sci. 22:1225-1233. https://doi.org/10.5713/ajas.2009.r.10
  12. Wang, N., J. M. Akey, K. Zhang, R. Chakraborty, and L. Jin. 2002. Distribution of recombination crossovers and the origin of haplotype blocks: The interplay of population history, recombination, and mutation. Am. J. Hum. Genet. 71:1227-1234. https://doi.org/10.1086/344398
  13. Wang, Y. H., K. A. Byrne, A. Reverter, G. S. Harper, M. Taniguchi, S. M. McWilliam, H. Mannen, K. Oyama, and S. A. Lehnert. 2005. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm. Genome 16:201-210. https://doi.org/10.1007/s00335-004-2419-8
  14. Wang, Y. H., N. I. Bower, A. Reverter, S. H. Tan, N. De Jager, R. Wang, S. M. McWilliam, L. M. Cafe, P. L. Greenwood, and S. A. Lehnert. 2009. Gene expression patterns during intra-muscular fat development in cattle. J. Anim. Sci. 87:119-130.
  15. Wang, Y. W. and P. J. Jones. 2004. Conjugated linoleic acid and obesity control: Efficacy and mechanisms. Int. J. Oves. Relat. Metab. Disord. 28:941-955. https://doi.org/10.1038/sj.ijo.0802641
  16. Westerling, D. B. and H. B. Hedrick. 1979. Fatty acid composition of bovine lipids as influenced by diet, sex and anatomical location and relationship to sensory characteristics. J. Anim. Sci. 48:1343-1348.
  17. Freake, H. C. and J. H. Oppenheimer. 1987. Stimulation of S14 mRNA and lipogenesis in brown fat by hypothyroidism, cold exposure, and cafeteria feeding: evidence supporting a general role for S14 in lipogenesis and lipogenesis in the maintenance of thermogenesis. Proc. Natl. Acad. Sci. USA 84:3070-3074. https://doi.org/10.1073/pnas.84.9.3070
  18. Zhu, Q., G. W. Anderson, G. T. Mucha, E. J. Parks, J. K. Metkowski, and C. N. Mariash. 2005. The spot 14 protein is required for de novo lipid synthesis in the lactating mammary gland. Endocrinology 146:3343-3350. https://doi.org/10.1210/en.2005-0204
  19. Narukami, T., S. Sasazaki, K. Oyama, T. Nogi, M. Taniguchi, and H. Mannen. 2011. Effect of DNA polymorphism related to fatty acid composition in adipose tissue of Holstein cattle. Anim. Sci. J. 82:406-411. https://doi.org/10.1111/j.1740-0929.2010.00855.x
  20. O'Keefe, P. W., G. H. Wellington, L. R. Mattick, and J. R. Stouffer. 1968. Composition of bovine muscle lipids at various carcass locations. J. Food Sci. 33:188-192. https://doi.org/10.1111/j.1365-2621.1968.tb01347.x
  21. Perez-Castillo, A., H. L. Schwartz, and J. H. Oppenheimer. 1987. Rat hepatic mRNA-S14 and lipogenic enzymes during weaning: role of S14 in lipogenesis. Am. J. Physiol. Endocrinol. Metab. 253:E536-E542.
  22. Reidiger, N. D., R. A. Othman, M. Suh, and M. H. Moghadasian. 2009. A systemic review of the roles of n-3 fatty acids in health and disease. J. Am. Diet. Assoc. 109:668-679. https://doi.org/10.1016/j.jada.2008.12.022
  23. Rudel, L. L., J. S. Park, and J. K. Sawyer. 1995. Compared with dietary monounsaturated and saturated fat, polyunsaturated fat protects African green monkeys from coronary artery atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 15:2101-2110. https://doi.org/10.1161/01.ATV.15.12.2101
  24. Ryu, J., Y. Kim, C. Kim, J. Kim, and C. Lee. 2012. Association of bovine carcass phenotypes with genes in an adaptive thermogenesis pathway. Mol. Biol. Rep. 39:1441-1445. https://doi.org/10.1007/s11033-011-0880-5
  25. Saatchi, M., D. J. Garrick, R. G. Tait Jr, M. S. Mayes, M. Drewnoski, J. Schoonmaker, C. Diaz, D. C. Beitz, and J. M. Reecy. 2013. Genome-wide association and prediction of direct genomic breeding values for composition of fatty acids in Angus beef cattle. BMC Genom. 14:730. https://doi.org/10.1186/1471-2164-14-730
  26. Cunningham, B. A., J. T. Moncur, J. T. Huntington, and W. B. Kinlaw. 1998. "Spot 14" protein: A metabolic integrator in normal and neoplastic cells. Thyroid 8:815-825. https://doi.org/10.1089/thy.1998.8.815
  27. Dryden, F. D and J. A. Marchello. 1970. Influence of total lipid and fatty acid composition upon the palatability of three bovine muscles. J. Anim. Sci. 31:36-41.
  28. Eberle, M. A., M. J. Rieder, L. Kruglyak, and D. A. Nickerson. 2006. Allele frequency matching between SNPs reveals an excess of linkage disequilibrium in genic regions of the human genome. PLoS Genetics 9:1319-1327.
  29. Edwards, R., S. B. Tove, T. N. Blumer, and E. R. Barrick. 1961. Effects of added dietary fat on fatty acid composition and carcass characteristics of fatting steers. J. Anim. Sci. 20:712-717.
  30. Folch, J., M. Lee, and G. H. S. Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:487-509.
  31. Wood, J. D., R. I. Richardson, G. R. Nute, A. V. Fisher, M. M. Campo, E. Kasapidou, P. R. Sheard, and M. Enser. 2004. Effects of fatty acids on meat quality: A review. Meat Sci. 66: 21-32. https://doi.org/10.1016/S0309-1740(03)00022-6
  32. Yang, A., T. W. Larsen, V. H. Powell, and R. K. Tume. 1999. A comparison of fat composition of Japanese and long-termgrain-fed Australian steers. Meat Sci. 51:1-9. https://doi.org/10.1016/S0309-1740(98)00065-5
  33. Zhang, X. B., L. Zan, H. Wang, R. Hao, and Y. Yang. 2009. Correlation of C184T mutation in THRSP gene with meat traits in the Qinchuan cattle. Scientia Agricultura Sinica 42:4058-4063.
  34. Zembayashi, M., K. Nishimura, D. K. Lunt, and S. B. Smith. 1995. Effect of breed type and sex on the fatty acid composition of subcutaneous and intramuscular lipids of finishing steers and heifers. J. Anim. Sci. 73:3325-3332.
  35. Alexander, L. J., M. D. MacNeil, T. W. Geary, W. M. Snelling, D. C. Rule, and J. A. Scanga. 2007. Quantitative trait loci with additive effects on palatability and fatty acid composition of meat in a Wagyu-Limousin $F_2$ population. Anim. Genet. 38:506-513. https://doi.org/10.1111/j.1365-2052.2007.01643.x
  36. Barret, J. C., B. Fry, J. Maller, and M. J. Daly. 2005. Haploview: Anaylsis and visualization of LD and haplotype maps. Bioinformatics 21:263-265. https://doi.org/10.1093/bioinformatics/bth457
  37. Cabezas, M. T., J. F. Hentges, J. E. Moore, and J. A. Olson. 1965. Effect of diet on fatty acid composition of body fat in steers. J. Anim. Sci. 24:57-61.
  38. Colbert, C. L., C. W. Kim, Y. A. Moon, L. Henry, M. Palnitkar, W. B. McKean, K. Fitzgerald, J. Deisenhofer, J. D. Horton, and H. J. Kwon. 2010. Crystal structure of Spot 14, a modulator of fatty acid synthesis. Proc. Natl. Acad. Sci. USA 107:18820-18825. https://doi.org/10.1073/pnas.1012736107
  39. Chung, K. Y., D. K. Lunt, C. B. Choi, S. H. Chae, R. D. Rhoades, T. H. Adams, B. Booren and S. M. Smith. 2006. Lipid characteristics of subcutaneous adipose tissue and M. longissimus thoracis of Angus and Wagyu steers fed to US and Japanese endpoints. Meat Sci 73:432-441. https://doi.org/10.1016/j.meatsci.2006.01.002

Cited by

  1. Genome-wide association and genomic prediction of breeding values for fatty acid composition in subcutaneous adipose and longissimus lumborum muscle of beef cattle vol.16, pp.1, 2015, https://doi.org/10.1186/s12863-015-0290-0
  2. Iron Content Affects Lipogenic Gene Expression in the Muscle of Nelore Beef Cattle vol.11, pp.8, 2016, https://doi.org/10.1371/journal.pone.0161160
  3. Genetic architecture of fatty acid composition in the longissimus dorsi muscle revealed by genome-wide association studies on diverse pig populations vol.48, pp.1, 2016, https://doi.org/10.1186/s12711-016-0184-2