DOI QR코드

DOI QR Code

Nanoparticle Induced Oxidative Stress in Cancer Cells: Adding New Pieces to an Incomplete Jigsaw Puzzle

  • Nogueira, Daniele Rubert (Departamento de Farmacia Industrial, Centro de Ciencias da Saude, Universidade Federal de Santa Maria) ;
  • Rolim, Clarice M. Bueno (Departamento de Farmacia Industrial, Centro de Ciencias da Saude, Universidade Federal de Santa Maria) ;
  • Farooqi, Ammad Ahmad (Laboratory For Translational Oncology and Personalized Medicine, Rashid Latif Medical College)
  • Published : 2014.06.30

Abstract

Nanotechnology is an emerging field with many promising applications in drug delivery systems. Because of outstanding developments in this field, rapidly increasing research is directed to the development of nanocarriers that may enhance the availability of drugs to the target sites. Substantial fraction of information has been added into the existing scientific literature focusing on the fact that nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles. It is worth mentioning that oxidative stress regulates an array of cell signaling cascades that resulted in cancer cell damage. Accumulating experimental evidence over the years has shown that wide-ranging biological mechanisms are triggered by these NPs in cultured cells due to the unique properties of engineered nanoparticles. In this review, we have attempted to provide an overview of the signaling cascades that are activated by oxidative stress in cancer cells in response to different kinds of nanomaterials, including quantum dots, metallic and polymeric nanoparticles.

References

  1. Zhu Y, Eaton JW, Li C (2012). Titanium dioxide (TiO2) nanoparticles preferentially induce cell death in transformed cells in a Bak/Bax-independent fashion. PLoS One, 7, 50607. https://doi.org/10.1371/journal.pone.0050607
  2. Srivastava RK, Rahman Q, Kashyap MP, et al (2013). Nanotitanium dioxide induces genotoxicity and apoptosis in human lung cancer cell line, A549. Hum Exp Toxicol, 32, 153-66. https://doi.org/10.1177/0960327112462725
  3. Wang Y, Zi XY, Su J, et al (2012). Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int J Nanomedicine, 7, 2641-52.
  4. Yoo KC, Yoon CH, Kwon D, et al (2012). Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. Int J Nanomedicine, 7, 1203-14.
  5. Zhao J, Bowman L, Magaye R, et al (2013). Apoptosis induced by tungsten carbide-cobalt nanoparticles in JB6 cells involves ROS generation through both extrinsic and intrinsic apoptosis pathways. Int J Oncol, 42, 1349-59. https://doi.org/10.3892/ijo.2013.1828
  6. Sanpui P, Chattopadhyay A, Ghosh SS (2011). Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces, 3, 218-28. https://doi.org/10.1021/am100840c
  7. Nguyen KC, Willmore WG, Tayabali AF (2013). Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology, 306, 114-23. https://doi.org/10.1016/j.tox.2013.02.010
  8. Pi J, Jin H, Liu R, et al (2013). Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells. Appl Microbiol Biotechnol, 97, 1051-62. https://doi.org/10.1007/s00253-012-4359-7
  9. Sahu SC, Zheng J, Graham L, et al (2014). Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol. Doi: 10.1002/jat.2994. https://doi.org/10.1002/jat.2994
  10. Saquib Q, Al-Khedhairy AA, Ahmad J, et al (2013). Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells. Toxicol Appl Pharmacol, 273, 289-97. https://doi.org/10.1016/j.taap.2013.09.001
  11. Schilrreff P, Mundina-Weilenmann C, Romero EL, Morilla MJ (2012). Selective cytotoxicity of PAMAM G5 core--PAMAM G2.5 shell tecto-dendrimers on melanoma cells. Int J Nanomedicine, 7, 4121-33.
  12. Selim ME, Hendi AA (2012). Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pacific J Cancer Prev, 13, 1617-20. https://doi.org/10.7314/APJCP.2012.13.4.1617
  13. Sharma V, Anderson D, Dhawan A (2012). Zinc oxide nanoparticles induce oxidative DNA damage and ROStriggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis, 17, 852-70. https://doi.org/10.1007/s10495-012-0705-6
  14. Singh BR, Singh BN, Khan W, Singh HB, Naqvi AH (2012). ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials, 33, 5753-67. https://doi.org/10.1016/j.biomaterials.2012.04.045
  15. Kang K, Jung H, Lim JS (2012). Cell death by polyvinylpyrrolidinecoated silver nanoparticles is mediated by ROS-dependent signaling. Biomol Ther, 20, 399-405. https://doi.org/10.4062/biomolther.2012.20.4.399
  16. Gehrke H, Fruhmesser A, Pelka J, et al (2013). In vitro toxicity of amorphous silica nanoparticles in human colon carcinoma cells. Nanotoxicology, 7, 274-93. https://doi.org/10.3109/17435390.2011.652207
  17. Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH (2013). Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed Res Int, 2013, 535796.
  18. Hou L, Bowman L, Meighan TG, Shi X, Ding M (2013). Induction of miR-21-PDCD4 signaling by tungsten carbidecobalt nanoparticles in JB6 cells involves ROS-mediated MAPK pathways. J Environ Pathol Toxicol Oncol, 32, 41-51. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2013007097
  19. Kim AS, Chae CH, Kim J, et al (2012). Silver nanoparticles induce apoptosis through the toll-like receptor 2 pathway. Oral Surg Oral Med Oral Pathol Oral Radiol, 113, 789-98. https://doi.org/10.1016/j.oooo.2012.01.019
  20. Kim M-C, Cui F-J, Kim Y (2013). Hydrogen peroxide promotes epithelial to mesenchymal transition and stemness in human malignant mesothelioma cells. Asian Pac J Cancer Prev, 14, 3625-30. https://doi.org/10.7314/APJCP.2013.14.6.3625
  21. Li X, He Q, Shi J (2014). Global gene expression analysis of cellular death mechanisms induced by mesoporous silica nanoparticle-based drug delivery system. ACS Nano, 8, 1309-20. https://doi.org/10.1021/nn4046985
  22. Mendoza A, Torres-Hernandez JA, Ault JG, et al (2014). Silica nanoparticles induce oxidative stress and inflammation of human peripheral blood mononuclear cells. Cell Stress Chaperones. Doi: 10.1007/s12192-014-0502-y. https://doi.org/10.1007/s12192-014-0502-y
  23. Mirakabad FST, Nejati-Koshki K, Akbarzadeh A, Yamchi MR, Milani M et al. (2014). PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev, 15, 517-35. https://doi.org/10.7314/APJCP.2014.15.2.517
  24. Athinarayanan J, Periasamy VS, Alsaif MA, Al-Warthan AA, Alshatwi AA (2014). Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol, 30, 89-100. https://doi.org/10.1007/s10565-014-9271-8
  25. Alarifi S, Ali D, Suliman Y AO, et al (2013a). Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells. Int J Nanomedicine, 8, 189-99.
  26. Alarifi S, Ali D, Alkahtani S, Verma A, et al (2013b). Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomed, 8, 983-93. https://doi.org/10.2217/nnm.13.80
  27. Alshatwi AA, Subbarayan PV, Ramesh E, et al (2012). Al2O3 nanoparticles induce mitochondria-mediated cell death and upregulate the expression of signaling genes in human mesenchymal stem cells. J Biochem Mol Toxicol, 26, 469-76. https://doi.org/10.1002/jbt.21448
  28. Chattopadhyay S, Dash SK, Kar Mahapatra S, et al (2014). Chitosan-modified cobalt oxide nanoparticles stimulate TNF-$\alpha$-mediated apoptosis in human leukemic cells. J Biol Inorg Chem, 19, 399-414. https://doi.org/10.1007/s00775-013-1085-2
  29. Cheng G, Guo W, Han L, et al (2013). Cerium oxide nanoparticles induce cytotoxicity in human hepatoma SMMC-7721 cells via oxidative stress and the activation of MAPK signaling pathways. Toxicol In Vitro, 27, 1082-8. https://doi.org/10.1016/j.tiv.2013.02.005
  30. Foldbjerg R, Dang DA, Autrup H (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol, 85, 743-50. https://doi.org/10.1007/s00204-010-0545-5
  31. Foldbjerg R, Olesen P, Hougaard M, et al (2009). PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett, 190, 156-62. https://doi.org/10.1016/j.toxlet.2009.07.009
  32. Ahamed M, Akhtar MJ, Siddiqui MA, et al (2011). Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology, 283, 101-8. https://doi.org/10.1016/j.tox.2011.02.010
  33. Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ (2013). Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere, 93, 2514-22. https://doi.org/10.1016/j.chemosphere.2013.09.047
  34. Ahmad J, Ahamed M, Akhtar MJ, et al (2012). Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol Appl Pharmacol, 259, 160-8. https://doi.org/10.1016/j.taap.2011.12.020
  35. Akhtar MJ, Ahamed M, Kumar S, et al (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine, 7, 845-57.

Cited by

  1. Nanoparticles Promise New Methods to Boost Oncology Outcomes in Breast Cancer vol.16, pp.5, 2015, https://doi.org/10.7314/APJCP.2015.16.5.1683
  2. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review pp.0260437X, 2018, https://doi.org/10.1002/jat.3654