Genetic Diversity and Phenetic Relationships of Genus Oxalis in Korea Using Random Amplified Polymorphic DNA (RAPD) Markers

RAPD마크를 이용한 한국 내 괭이밥속 식물의 유전적 다양성과 표현형 관계

  • Received : 2014.03.19
  • Accepted : 2014.07.16
  • Published : 2014.07.30


We evaluated the phenetic relationships within six taxa of genus Oxalis L. in Korea with random amplified polymorphic DNA (RAPD) markers. Ten primers produced 125 bands for six taxa, and the mean number of bands per primer was 12.5. Across the six taxa, 121 (96.8%) bands were polymorphic, and only four were monomorphic. The mean number of RAPD phenotypes across the six taxa varied from 3.6 (O. stricta and O. corymbosa) to 4.8 (O. corniculata for. rubrifolia). In a simple measure of intraspecies variability according to the percentage of polymorphic bands, O. stricta and O. corymbosa exhibited the lowest variation (28.8%), and O. corniculata for. rubrifolia showed the highest (38.4%). A mean of 32.7% of the loci was polymorphic within taxa. The total interspecies genetic diversity ($H_T$) and intraspecies genetic diversity ($H_S$) was 0.362 and 0.122, respectively. On a per-locus basis, the proportion of total genetic variation due to differences among species ($G_{ST}$) was 0.663. This indicates that about 66.3% of the total variation was among species. The node of O. stricta and O. corniculata for. rubrifolia was strongly supported, with a high bootstrap value in the NJ tree and sistered with O. corniculata. According to RAPD analysis, the number of chromosomes was not congruent with a phenetic relationship.


Genetic diversity;genus Oxalis;phenetic relationships;polymorphic;random amplified polymorphic DNA (RAPD)


  1. Yeh, F. C., Yang, R. C. and Boyle, T. 1999. POPGENE Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta, Alberta.
  2. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739.
  3. Vaio, M., Gardner, A., Emshwiller, E. and Guerra, M. 2013. Molecular phylogeny and chromosome evolution among the creeping herbaceous Oxalis species of sections Corniculatae and Ripariae (Oxalidaceae). Mol Phylogenet Evol 68, 199-211.
  4. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18, 6531-6535.
  5. Oberlander, K. C., Dreyer, L. L. and Esler, K. J. 2002. Biogeography of Oxalis (Oxalidaceae) in South Africa: a preliminary study. Bothalia 32, 97-100.
  6. McDermott, J. M. and McDonald, B. A. 1993. Gene flow in plant pathosystems. Ann Rev Phytopathy 31, 353-373.
  7. Micheli, M. R., Bova, R., Pascale, E. and Ambrosio, E. 1994. Reproducible DNA fingerprint with the random amplified polymorphic DNA (RAPD) method. Nucleic Acids Res 22, 1921-1922.
  8. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 701, 3321-3323.
  9. Obone, C. 2005. The systematic significance of the fruit and seed morphology and anatomy in selected Oxalis L. (Oxalidaceae) species, Master dissertation, Stellenbosch University, Stellenbosch, South Africa.
  10. Radford, A. E., Ahles, H. E. and Bell, C. R. 1964. Manual of the Vascular Flora of the Carolinas, pp. 648, Chapel Hill, NC: University of North Carolina Press.
  11. Ramos, J. R., Telles, M. P., Diniz-Filho, J. A., Soares, T. N., Melo, D. B. and Oliveira, G. 2008. Optimizing reproducibility evaluation for random amplified polymorphic DNA markers. Genet Mol Res 7, 1384-1391.
  12. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
  13. Salter, T. M. 1944. The genus Oxalis in South Africa: a taxonomic revision. J South African Bot Suppl 1, 1-355.
  14. Shibaike, H., Ishiguri, Y. and Kawano, S. 1997. Genetic variation and relationships of Japanese populations of Oxalis corniculata L. (Oxalidaceae) detected by random amplified polymorphic DNA (RAPD). Plant Species Biol 12, 25-34.
  15. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791.
  16. Bais, H. P., Park, S. W., Stermitz, F. R., Halligan, K. M. and Vivanco, J. M. 2002. Exudation of fluorescent b-carbolines from Oxalis tuberosa L. roots. Phytochemistry 61, 539-543.
  17. Bornet, B. and Branchard, M. 2001. Nonanchored Inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rept 19, 209-215.
  18. Duke, J. A. 2001. Handbook of Edible Weeds, pp. 140-141, CRC Press, Florida, USA.
  19. Heibl, C. 2005. Studies on the systematics, evolution, and biogeography of Oxalis sections Caesiae, Carnosae, and Giganteae, endemic to the Atacama desert of northern Chile. Diploma thesis, University of Munich, Munich, Germany.
  20. Iruela, M., Rubio, J., Cubero, J. I., Gil, J. and Mill, T. 2002. Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor Appl Genet 104, 643-651.
  21. Koo, J., Chae, M. S., Lee, J. K. and Whang, S. S. 2007. Analysis of ITS DNA sequences of Korean Oxalis species (Oxalidaceae). Korean J Pl Taxon 37, 419-430.
  22. Lee, T. B. 2003. Coloured Flora of Korea, pp. 914, Hyangmoon Publishing Co., Seoul, Korea.
  23. Lee, Y. N. 2007. New Flora of Korea, pp. 885, Kyo-Yak Publishing Co, Seoul, Korea.
  24. Lopez, A. and Mulgura, M. E. 2011. A new species of Oxalis section Palmatifoliae (Oxalidaceae) from southern Argentina. Phytotaxa 33, 41-45.
  25. Lourteig, A. 2000. Oxalis L. Subgeneros Monoxalis (Small) Lourt., Oxalis x Trifidus Lourt. Bradea 7, 201-629.

Cited by

  1. Phylogeography, genetic diversity and population structure in a Patagonian endemic plant vol.9, pp.3, 2017,