DOI QR코드

DOI QR Code

Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode

  • Kim, Kyungmin (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Jung, Yongju (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
  • Received : 2014.06.01
  • Accepted : 2014.06.27
  • Published : 2014.07.31

Abstract

This study reports on the influence of N-butyl-N-methylpyrrolidinium tetrafluoroborate ($PYR_{14}BF_4$) ionic liquid additive on the conducting and interfacial properties of organic solvent based electrolytes against a carbon electrode. We used the mixture of ethylene carbonate/dimethoxyethane (1:1) as an organic solvent electrolyte and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a common salt. Using the $PYR_{14}BF$ ionic liquid as additive produced higher ionic conductivity in the electrolyte and lower interface resistance between carbon and electrolyte, resulting in improved capacitance. The chemical and electrochemical stability of the electrolyte was measured by ionic conductivity meter and linear sweep voltammetry. The electrochemical analysis between electrolyte and carbon electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy.

References

  1. Oh MS, Park SJ, Jung Y, Kim S. Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met, 162, 695 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.02.021. https://doi.org/10.1016/j.synthmet.2012.02.021
  2. Park SK, Kim S. Effect of carbon blacks filler addition on electrochemical behaviors of $Co_3O_4/graphene$ nanosheets as a supercapacitor electrodes. Electrochim Acta, 89, 516 (2013). http://dx.doi.org/10.1016/j.electacta.2012.11.075. https://doi.org/10.1016/j.electacta.2012.11.075
  3. Kim KS, Park SJ. Electrochemical performance of graphene/carbon electrode contained well-balanced micro- and mesopores by activation-free method. Electrochim Acta, 65, 50 (2012). http://dx.doi.org/10.1016/j.electacta.2012.01.009. https://doi.org/10.1016/j.electacta.2012.01.009
  4. Gao ZH, Zhang H, Cao GP, Han MF, Yang YS. Spherical porous VN and $NiO_x$ as electrode materials for asymmetric supercapacitor. Electrochim Acta, 87, 375 (2013). http://dx.doi.org/10.1016/j.electacta.2012.09.075. https://doi.org/10.1016/j.electacta.2012.09.075
  5. Park SK, Park SJ, Kim S. Preparation and capacitance behaviors of cobalt oxide/graphene composites. Carbon Lett, 13, 130 (2012). http://dx.doi.org/10.5714/CL2012.13.2.130. https://doi.org/10.5714/CL.2012.13.2.130
  6. Kim JE, Park SJ, Kim S. Capacitance behaviors of polyaniline/graphene nanosheet composites prepared by aniline chemical polymerization. Carbon Lett, 14, 51 (2013). http://dx.doi.org/10.5714/CL2013.14.1.051. https://doi.org/10.5714/CL.2012.14.1.051
  7. Ruch PW, Hahn M, Rosciano F, Holzapfel M, Kaiser H, Scheifele W, Schmitt B, Novak P, Kotz R, Wokaun A. In situ X-ray diffraction of the intercalation of $(C_2H_5)_4N^+$ and $BF_4\;^{-}$ into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes. Electrochim Acta, 53, 1074 (2007). http://dx.doi.org/10.1016/j.electacta.2007.01.069. https://doi.org/10.1016/j.electacta.2007.01.069
  8. Burke A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta, 53, 1083 (2007). http://dx.doi.org/10.1016/j.electacta.2007.01.011. https://doi.org/10.1016/j.electacta.2007.01.011
  9. Anouti M, Couadou E, Timperman L, Galiano H. Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material. Electrochim Acta, 64, 110 (2012). http://dx.doi.org/10.1016/j.electacta.2011.12.120. https://doi.org/10.1016/j.electacta.2011.12.120
  10. Kim JH, Nam KW, Ma SB, Kim KB. Fabrication and electrochemical properties of carbon nanotube film electrodes. Carbon, 44, 1963 (2006). http://dx.doi.org/10.1016/j.carbon.2006.02.002. https://doi.org/10.1016/j.carbon.2006.02.002
  11. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925. https://doi.org/10.1126/science.1125925
  12. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034. https://doi.org/10.1016/j.carbon.2007.02.034
  13. Palm R, Kurig H, Tonurist K, Janes A, Lust E. Is the mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate applicable as electrolyte in electrical double layer capacitors? Electrochem Commun, 22, 203 (2012). http://dx.doi.org/10.1016/j.elecom.2012.06.029. https://doi.org/10.1016/j.elecom.2012.06.029
  14. Francke R, Cericola D, Kotz R, Weingarth D, Waldvogel SR. Novel electrolytes for electrochemical double layer capacitors based on 1,1,1,3,3,3-hexafluoropropan-2-ol. Electrochim Acta, 62, 372 (2012). http://dx.doi.org/10.1016/j.electacta.2011.12.050. https://doi.org/10.1016/j.electacta.2011.12.050
  15. Brandt A, Isken P, Lex-Balducci A, Balducci A. Adiponitrile-based electrochemical double layer capacitor. J Power Sources, 204, 213 (2012). http://dx.doi.org/10.1016/j.jpowsour.2011.12.025. https://doi.org/10.1016/j.jpowsour.2011.12.025
  16. Isken P, Dippel C, Schmitz R, Schmitz RW, Kunze M, Passerini S, Winter M, Lex-Balducci A. High flash point electrolyte for use in lithium-ion batteries. Electrochim Acta, 56, 7530 (2011). http://dx.doi.org/10.1016/j.electacta.2011.06.095. https://doi.org/10.1016/j.electacta.2011.06.095
  17. Perricone E, Chamas M, Cointeaux L, Lepretre JC, Judeinstein P, Azais P, Beguin F, Alloin F. Investigation of methoxypropionitrile as co-solvent for ethylene carbonate based electrolyte in supercapacitors. A safe and wide temperature range electrolyte. Electrochim Acta, 93, 1 (2013). http://dx.doi.org/10.1016/j.electacta.2013.01.084. https://doi.org/10.1016/j.electacta.2013.01.084
  18. Abu-Lebdeh Y, Davidson I. High-voltage electrolytes based on adiponitrile for Li-ion batteries. J Electrochem Soc, 156, A60 (2009). http://dx.doi.org/10.1149/1.3023084. https://doi.org/10.1149/1.3023084
  19. Oh MS, Kim S. Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization. Electrochim Acta, 59, 196 (2012). http://dx.doi.org/10.1016/j.electacta.2011.10.058. https://doi.org/10.1016/j.electacta.2011.10.058
  20. Brandt A, Balducci A. The influence of pore structure and surface groups on the performance of high voltage electrochemical double layer capacitors containing adiponitrile-based electrolyte. J Electrochem Soc, 159, A2053 (2012). http://dx.doi.org/10.1149/2.074212jes. https://doi.org/10.1149/2.074212jes
  21. Kang J, Wen J, Jayaram SH, Yu A, Wang X. Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes. Electrochim Acta, 115, 587 (2014). http://dx.doi.org/10.1016/j.electacta.2013.11.002. https://doi.org/10.1016/j.electacta.2013.11.002
  22. Oh MS, Kim S. Synthesis and analysis of polyaniline/$TiO_2$ composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid, Electrochimica Acta, 78, 279 (2012). http://dx.doi.org/10.1016/j.electacta.2012.05.109. https://doi.org/10.1016/j.electacta.2012.05.109

Cited by

  1. Ion conducting properties of imidazolium salts with tri-alkyl chains in organic electrolytes against activated carbon electrodes vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.070