DOI QR코드

DOI QR Code

The Grunwald-Winstein Relationship in the Solvolysis of β-Substituted Chloroformate Ester Derivatives: The Solvolysis of 2-Phenylethyl and 2,2-Diphenylethyl Chloroformates

  • Park, Kyoung-Ho ;
  • Yang, Gi-Hoon ;
  • Kyong, Jin Burm
  • Received : 2014.03.19
  • Accepted : 2014.04.07
  • Published : 2014.08.20

Abstract

Solvolysis rate constants of 2-phenylethyl-(2-$PhCH_2CH_2OCOCl$, 1) and 2,2-diphenylethyl chloroformate (2,2-$Ph_2CHCH_2OCOCl$, 2), together with the previously studied solvolyses of ${\alpha}$- and ${\beta}$-substituted chloroformate ester derivatives, are reported in pure and binary solvents at $40.0^{\circ}C$. The linear free energy relationship (LFER) and sensitivities (l and m) to changes in solvent nucleophilicity ($N_T$) and solvent ionizing power ($Y_{Cl}$) of the solvolytic reactions are analyzed using the Grunwald-Winstein equation. The kinetic solvent isotope effects (KSIEs) in methanol and activation parameter values in various solvents are investigated for 1 and 2. These results support well the bimolecular pathway with same aspects. Furthermore, the small negative values of the entropies of activation of solvolysis of 1 and 2 in the highly ionizing aqueous fluoroalcohols are consistent with the ionization character of the rate-determining step, and the KSIE values of 1.78 and 2.10 in methanol-d indicate that one molecule of solvent acts as a nucleophile and the other acts as a general-base catalyst. It is found that the ${\beta}$-substituents in alkyl chloroformate are not the important factor to decide the solvolysis reaction pathway.

Keywords

2-Phenylethyl chloroformate;2,2-Diphenylethyl chloroformate;Grunwald-Winstein equation;Solvolysis;Linear free energy relationship

References

  1. Hudson, R. F.; Mass, G. J. Chem. Soc. (London) 1964, 2982.
  2. Brown, D. A.; Hudson, R. F. J. Chem. Soc. (London) 1953, 883.
  3. Melander, L. Isotope Effects on Reaction Rates; Ronald Press: New York, 1960.
  4. Koo, I. S.; Yang, K.; Kang, D. H.; Park, H. J.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 573.
  5. Ryu, Z. H.; Shin, S. H.; Lee, J. P.; Lim, G. T.; Bentley, T. W. J. Chem. Soc. Perkin Trans. 2 2002, 7, 1283.
  6. Oh, Y. H.; Jang, G. G.; Lim, G. T.; Ryu, Z. H. Bull. Korean Chem. Soc. 2002, 23, 1089. https://doi.org/10.5012/bkcs.2002.23.8.1089
  7. Yew, K. H.; Koh, H. J.; Lee, H. W. J. Chem. Soc. Perkin Trans. 2 1995, 12, 2263.
  8. Queen, A. Can. J. Chem. 1967, 45, 1619. https://doi.org/10.1139/v67-264
  9. Swain, C. G.; Scott, C. B. J. Am. Chem. Soc. 1953, 75, 246. https://doi.org/10.1021/ja01097a520
  10. Smith, M. B.; March, S. March's Advanced Organic Chemistry; Wiley: New York, 2001.
  11. Kyong, J. B.; Yoo, J. S.; Kevill, D. N. J. Org. Chem. 2003, 68, 3425. https://doi.org/10.1021/jo0207426
  12. Kevill, D. N.; Kolwyck, K. C.; Weitl, F. L. J. Am. Chem. Soc. 1970, 92, 7300. https://doi.org/10.1021/ja00728a012
  13. Rappoport, Z.; Kaspi, J. J. Am. Chem. Soc. 1974, 96, 4518. https://doi.org/10.1021/ja00821a027
  14. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  15. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. Synop. 1993, 174.
  16. Von Schleyer, P. R.; Nicholas, R. D. J. Am. Chem. Soc. 1961, 83, 2700. https://doi.org/10.1021/ja01473a024
  17. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120. https://doi.org/10.1021/jo9714270
  18. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Research (S) 1999, 150.
  19. Kyong, J. B.; Won, H.; Kevill, D. N. Int. J. Mol. Sci. 2005, 6, 87. https://doi.org/10.3390/i6010087
  20. D'Souza, M. J.; McAneny, M. J.; Kevill, D. N.; Kyong, J. B.; Choi, S. H. Beilstein J. Org. Chem. 2011, 7, 543. https://doi.org/10.3762/bjoc.7.62
  21. D'Souza, M. J.; Carter, S. E.; Kevill, D. N. Int. J. Mol. Sci. 2011, 12, 1161. https://doi.org/10.3390/ijms12021161
  22. Kyong, J. B.; Kim, Y.-G.; Kim, D. K.; Kevill, D. N. Bull. Korean Chem. Soc. 2000, 21, 662.
  23. Kevill, D. N.; Kyong, J. B.; Weitl, F. L. J. Org. Chem. 1990, 55, 4304. https://doi.org/10.1021/jo00301a019
  24. Bentley, T. W.; Harris, H. C. Int. J. Mol. Sci. 2011, 12, 4805. https://doi.org/10.3390/ijms12084805
  25. Kyong, J. B.; Park, B.-C.; Kim, C.-B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051. https://doi.org/10.1021/jo005630y
  26. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  27. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  28. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1997, 1721.
  29. Bateman, L. C.; Hughes, E. D. J. Chem. Soc. 1940, 945. https://doi.org/10.1039/jr9400000945
  30. Dostrovsky, I.; Hughes, E. D. J. Chem. Soc. 1946, 164. https://doi.org/10.1039/jr9460000164
  31. Dostrovsky, I.; Hughes, E. D.; Ingold, C. K. J. Chem. Soc. 1946, 173. https://doi.org/10.1039/jr9460000173
  32. Crunden, E. W.; Hudson, R. F. J. Chem. Soc. (London) 1961, 3748.
  33. Villas-Boas, S. G.; Delicado, D. G.; Akesson, M.; Nielson, J. Anal. Biochem. 2003, 322, 134. https://doi.org/10.1016/j.ab.2003.07.018
  34. Biermann, U.; Metzger, J. O. J. Am. Chem. Soc. 2004, 126, 10319. https://doi.org/10.1021/ja048904y
  35. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  36. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  37. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  38. Kevill, D. K.; D'Souza, M. J. J. Chem. Res. 2008, 61.
  39. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031