DOI QR코드

DOI QR Code

Inhibitory Effect of Bee Venom Toxin on the Growth of Cervix Cancer C33A Cells via Death Receptor Expression and Apoptosis

  • Ko, Seong Cheol (Department of Acupuncture & Moxibustion Medicine, College of Orinetal Medicine, Gachon University) ;
  • Song, Ho Sueb (Department of Acupuncture & Moxibustion Medicine, College of Orinetal Medicine, Gachon University)
  • Received : 2014.05.14
  • Accepted : 2014.05.28
  • Published : 2014.06.20

Abstract

Objectives : We investigated whether bee venom(BV) inhibit cell growth through enhancement of death receptor expressions in the human cervix cancer C33A cells. Methods : BV($1{\sim}5{\mu}g/ml$) inhibited the growth of cervix cancer C33A cells by the induction of apoptotic cell death in a dose dependent manner. Results : Consistent with apoptotic cell death, expression of Fas, death receptor(DR) 3, 4, 5 and 6 was increased concentration dependently in the cells. Moreover, Fas, DR3 and DR6 revealed more sensitivity to BV. Thus, We reconfirmed whether they actually play a critical role in anti-proliferation of cervix cancer C33A cells. Consecutively, expression of DR downstream pro-apoptotic proteins including caspase-8, -3, -9 was upregulated and Bax was concomitantly overwhelmed the expression of Bcl-2. NF-${\kappa}B$ were also inhibited by treatment with BV in C33A cells. Conclusions : These results suggest that BV could exert anti-tumor effect through induction of apoptotic cell death in human cervix cancer C33A cells via enhancement of death receptor expression, and that BV could be a promising agent for preventing and treating cervix cancer.

References

  1. Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer. 1993 ; 54(4) : 594-606. https://doi.org/10.1002/ijc.2910540413
  2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005 ; 55(2) : 74-108. https://doi.org/10.3322/canjclin.55.2.74
  3. Ryu HS. Concurrent chemoradiotherapy in cervical cancer(a new paradigm in cervical cancer treatment). Yonsei Med J. 2002 ; 43(3) : 749-53. https://doi.org/10.3349/ymj.2002.43.6.749
  4. Koh WRP. Locally advanced cervical cancer. In: Gershenson D MW, editor. Gynecologic cancer: controversies in management, Vol. Philadelphia : Elsevier Churchill-Livingstone. 2004 : 175-86.
  5. Rose PG, Bundy BN, Watkins ER et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999 ; 340(15) : 1144-53. https://doi.org/10.1056/NEJM199904153401502
  6. Whitney CW, Sause W, Bundy BN et al. Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stages IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes. A Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol. 1999 ; 17(5) : 1339-48.
  7. Morris M, Eifel PJ, Lu J et al. Pelvic radiation with concurrent chemotherapy versus pelvic and para-aortic radiation for high-risk cervical cancer. A Randomized Radiation Therapy Oncology Group clinical trial. N Engl J Med. 1999 ; 340(5) : 1137-43. https://doi.org/10.1056/NEJM199904153401501
  8. PetersIII WA, Lui PY et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk earlystage cancer of the cervix. J Clin Oncol. 2000 ; 18(8) : 1606-13.
  9. Keys HM, Bundy BN, Stehman FB et al. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage in cervical carcinoma. N Engl J Med. 1999 ; 340(15) : 1154-61. https://doi.org/10.1056/NEJM199904153401503
  10. Shen Xin, Lv Shulan, Zhang Jing, Li Shengnan, Gao Jiyong, Pan Cheng''en. Effects of res on proliferation and apoptosis of human cervical carcinoma cell lines C33A, SiHa and HeLa. J of Medical Colleges of PLA. 2009 ; 24(3) : 148-54 https://doi.org/10.1016/S1000-1948(09)60031-9
  11. Horinaka M, Yoshida T, Shiraishi T et al. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene. 2005 ; 24(48) : 7180-9. https://doi.org/10.1038/sj.onc.1208874
  12. Park HJ, Lee SH, Son DJ et al. Antiarthritic effect of bee venom: inhibition of inflammation mediator generation by suppression of NF-${\kappa}B$ through interaction with the p50 subunit. Arthritis Rheum. 2004 ; 50(11) : 3504-15. https://doi.org/10.1002/art.20626
  13. Wang C, Chen T, Zhang N et al. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand(TRAIL)- induced apoptosis by activating CaMKII-TAK1- JNK/p38 and inhibiting I${\kappa}B$$\alpha$ kinase-NF${\kappa}B$. J Biol Chem. 2009 ; 284(6) : 3804-13. https://doi.org/10.1074/jbc.M807191200
  14. Park JH, Jeong YJ, Park KK et al. Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol Cells. 2010a ; 29(2) : 209-15. https://doi.org/10.1007/s10059-010-0028-9
  15. Park MH, Choi MS, Kwak DH et al. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-${\kappa}B$. Prostate. 2011 ; 71(8) : 801-12. https://doi.org/10.1002/pros.21296
  16. Liu S, Yu M, He Y et al. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology. 2008 ; 47(6) : 1964-73. https://doi.org/10.1002/hep.22240
  17. Sheets EE, Yeh J. The role of apoptosis in gynaecological malignancies. Ann Med. 1997 ; 29(2) : 121-6. https://doi.org/10.3109/07853899709113697
  18. Isacson C, Kessis TD, Hedrick L, Cho KR. Both cell proliferation and apoptosis increase with lesion grade in cervical neoplasia but do not correlate with human papillomavirus type. Cancer Res. 1996 ; 56(4) : 669-74.
  19. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA-Cancer J Clin. 2005 ; 55(3) : 178-94. https://doi.org/10.3322/canjclin.55.3.178
  20. Costantini P, Jacotot E, Decaudin D, Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst. 2000 ; 92(13) : 1042-53. https://doi.org/10.1093/jnci/92.13.1042
  21. Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol. 1999 ; 17(1) : 331-7. https://doi.org/10.1146/annurev.immunol.17.1.331
  22. Ashkenazi A. Targeting death and decoy receptors of the tumor necrosis factor superfamily. Nat Rev, Cancer. 2002 ; 2(6) : 420-30. https://doi.org/10.1038/nrc821
  23. Timmer T, de Vries EG, de Jong S. Fas receptormediated apoptosis. A clinical application. J Pathol. 2002 ; 196(2) : 125-34. https://doi.org/10.1002/path.1028
  24. Kischkel FC, Hellbardt S, Behrmann I et al. Cytotoxicity-dependent APO-1(Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995 ; 14(22) : 5579-88.
  25. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 2003 ; 10(1) : 26-35. https://doi.org/10.1038/sj.cdd.4401186
  26. Enari M, Talanian RV, Wong WW, Nagata S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature. 1996 ; 380(6576) : 723-6. https://doi.org/10.1038/380723a0
  27. Scaffidi C, Fulda S, Srinivasan A et al. Two CD95(APO-1/Fas) signaling pathways. EMBO J. 1998 ; 17(6) : 1675-87. https://doi.org/10.1093/emboj/17.6.1675
  28. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998 ; 281(5381) : 1309-12. https://doi.org/10.1126/science.281.5381.1309
  29. Hengartner MO. The biochemistry of apoptosis. Nature. 2000 ; 407(6805) : 770-6. https://doi.org/10.1038/35037710
  30. Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol. Med. 2001 ; 7(7) : 314-9. https://doi.org/10.1016/S1471-4914(01)02026-3
  31. Li JY, Xu ZJ, Tan MY, Su WK, Gong XG. 3- (4-(Benzo[d]thiazol-2-yl) -1-phenyl-1Hpyrazol-3-yl) phenyl acetate induced HepG2 cell apoptosis through a ROS-mediated pathway. Chem Biol Interact. 2010 ; 183(3) : 341-8. https://doi.org/10.1016/j.cbi.2009.12.008
  32. Cain K, Brown DG, Langlais C, Cohen GM. Caspase activation involves the formation of the aposome, a large(approximately 700 kDa) caspaseactivating complex. J Biol Chem. 1999 ; 274(32) : 22686-92. https://doi.org/10.1074/jbc.274.32.22686
  33. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998 ; 94(4) : 481-90. https://doi.org/10.1016/S0092-8674(00)81589-5
  34. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998 ; 94(4) : 491- 501. https://doi.org/10.1016/S0092-8674(00)81590-1
  35. Ryu HS, Chang KH, Chang SJ, Kim MS, Joo HJ, Oh KS. Expression of TRAIL(TNF-related apoptosisinducing ligand) receptors in cervical cancer. Int J Gynecol Cancer. 2000 ; 10(5) : 417-24. https://doi.org/10.1046/j.1525-1438.2000.010005417.x
  36. Horinaka M, Yoshida T, Shiraishi T et al. The combination of TRAIL and luteolin enhances apoptosis in human cervical cancer HeLa cells. Biochem Biophys Res Commun. 2005 ; 333(3) : 833-8. https://doi.org/10.1016/j.bbrc.2005.05.179
  37. Hougardy BM, Maduro JH, van der Zee AG, Willemse PH, de Jong S, de Vries EG. Clinical potential of inhibitors of survival pathways and activators of apoptotic pathways in treatment of cervical cancer: changing the apoptotic balance. Lancet Oncol. 2005 ; 6(8) : 589-98. https://doi.org/10.1016/S1470-2045(05)70281-3
  38. Hougardy BM, van der Zee AG, van den Heuvel FA, Timmer T, de Vries EG, de Jong S. Sensitivity to Fas-mediated apoptosis in high- risk HPVpositive human cervical cancer cells. Relationship with Fas, caspase-8, and Bid. Gynecol Oncol. 2005 ; 97(2) : 353-64. https://doi.org/10.1016/j.ygyno.2005.01.036
  39. Baatout S, Derradji H, Jacquet P et al. Increased radiation sensitivity of an eosinophilic cell line following treatment with epigallocatechingallate, resveratrol and curcuma. Int J Mol Med. 2005 ; 15(2) : 337-52.
  40. Le Corre L, Chalabi N, Delort L et al. Resveratrol and breast cancer chemoprevention. Molecular mechanisms. Mol Nutr Food Res. 2005 ; 49(5) : 462-71. https://doi.org/10.1002/mnfr.200400094
  41. Levi F, Pasche C, Lucchini F et al. Resveratrol and breast cancer risk. Eur J Cancer Preo. 2005 ; 14(2) : 139-42. https://doi.org/10.1097/00008469-200504000-00009
  42. Pozo-Guisado E, Merino JM, Mulero-Navarro S et al. Resveratrol induced apoptosis in MCF-7 human breast cancer cells involves a caspaseindependent mechanism with downregulation of Bcl-2 and NF-kappaB. Int J Cancer. 2005 ; 115(1) : 74-84. https://doi.org/10.1002/ijc.20856
  43. Tyagi A, Singh RP, Agarwal C et al. Resveratrol causes Cdc2-try15 phosphorylation via ATM/ ATR-Chk1/2-Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cell. Carcinogenesis. 2005 ; 26(11) : 1978-87. https://doi.org/10.1093/carcin/bgi165
  44. Yu L, Sun ZJ, Wu SL et al. Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer. J Gastroenterol. 2003 ; 9(10) : 2341-3.
  45. Jang DM, Song HS. Inhibitory effects of bee venom on growth of A549 lung cancer cells via induction of death receptors. The Acupuncture. 2012 ; 30(1) : 57-70. https://doi.org/10.13045/kamms.2013006
  46. James MA, Lee JH, Klingelhutz AJ. Human papillomavirus type 16 E6 activates NF-${\kappa}B$, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J Virol. 2006 ; 80(11) : 5301-7. https://doi.org/10.1128/JVI.01942-05
  47. Kutuk O, Basaga H. Aspirin inhibits TNFalphaand IL-1-induced NF-kappaB activation and sensitizes HeLa cells to apoptosis. Cytokine. 2004 ; 25 : 229-37. https://doi.org/10.1016/j.cyto.2003.11.007
  48. Nair A, Venkatraman M, Maliekal TT, Nair B, Karunagaran D. NF-kappaB is constitutively activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix. Oncogene. 2003 ; 22(5) : 50-8. https://doi.org/10.1038/sj.onc.1206043
  49. Li J, Jia H, Xie L et al. Association of constitutive nuclear factor-kappaB activation with aggressive aspects and poor prognosis in cervical cancer. Int J Gynecol Cancer. 2009 ; 19(8) : 1421-6. https://doi.org/10.1111/IGC.0b013e3181b70445
  50. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006 ; 441(7092) : 431-6. https://doi.org/10.1038/nature04870