DOI QR코드

DOI QR Code

Elimination Reactions of Aryl Furylacetates Promoted by R2NH-R2NH2 + in 70 mol% MeCN(aq). Effects of β-Aryl on the Ketene-Forming Transition-State

  • Received : 2014.03.26
  • Accepted : 2014.03.31
  • Published : 2014.07.20

Abstract

Ketene-forming elimination from 2-X-4-nitrophenyl furylacetates (1a-d) promoted by $R_2NH-R_2NH_2{^+}$ in 70 mol % MeCN(aq) has been studied kinetically. When X = Cl and $NO_2$, the reactions exhibited second-order kinetics as well as Br$\ddot{o}$nsted ${\beta}$ = 0.37-0.54 and $|{\beta}_{lg}|$ = 0.31-0.45. The Br$\ddot{o}$nsted ${\beta}$ decreased with a poorer leaving group and $|{\beta}_{lg}|$ increased with a weaker base. The results are consistent with an E2 mechanism. When the leaving group was changed to a poorer one [X= H (1a) and $OCH_3$ (1b)], the reaction mechanism changed to the competing E2 and E1cb mechanisms. A further change to the E1cb mechanism was realized for the reaction of 1a with $i-Pr_2NH/i-Pr_2NH_2{^+}$ in 70 mol % MeCN-30 mol % $D_2O$. By comparing the kinetic results in this study with the existing data for $ArCH_2C(O)OC_6H_3-2-X-4-NO_2$, the effect of the ${\beta}$-aryl group on the ketene-forming elimination was assessed.

Keywords

Elimination;E2 and E1cb Mechanism;${\beta}$-Aryl Group effect

References

  1. (a) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper and Row: New York, 1987, pp 214-218.
  2. Coetzee, J. F. Prog. Phys. Org. Chem. 1965, 4, 45-92.
  3. Gandler, J. R. The Chemistry of Double Bonded Functional Groups; Patai, S., Ed.; John Wiley and Sons: Chichester, 1989; vol. 2, part 1, pp 734-797.
  4. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper and Row: New York, 1987.
  5. (b) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper and Row: New York, 1987, pp 591-616.
  6. (c) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper and Row: New York, 1987, pp 640-644.
  7. Gold, V. Adv. Phys. Org. Chem. 1969, 7, 259-267.
  8. (a) Cho, B. R.; Kim, Y. K; Maing Yoon, C. O. J. Am. Chem. Soc. 1997, 119, 691-697. https://doi.org/10.1021/ja961294k
  9. Douglas, K. T.; Alborz, M.; Rullo, G. R.; Yaggi, N. F. J. Chem. Soc. Chem. Commun. 1982, 242-246.
  10. Isaac, N. S.; Najem, T. S. J. Chem. Soc., Perkin Trans. 2 1988, 557-562.
  11. Chung, S. Y.; Yoh, S. D.; Choi, J. H.; Shim, K. T. J. Korean Chem. Soc. 1992, 36, 446-452.
  12. (b) Cho, B. R.; Kim, Y. K.; Yoon, J. S.; Kim, J. C.; Pyun, S. Y. J. Org. Chem. 2000, 65, 1239-1241. https://doi.org/10.1021/jo991473v
  13. (c) Cho, B. R.; Kim, N. S.; Kim, Y. K.; Son, K. H. J. Chem. Soc., Perkin Trans. 2 2000, 1419-1422.
  14. (d) Cho, B. R.; Jeong, H. C.; Seung, Y. J.; Pyun, S. Y. J. Org. Chem. 2002, 67, 5232-5238. https://doi.org/10.1021/jo025555m
  15. (e) Pyun, S. Y.; Lee, D. C.; Kim, J. C.; Cho, B. R. Org. Biomol. Chem. 2003, 1, 2734-2738. https://doi.org/10.1039/b303231k
  16. (f) Pyun, S. Y.; Cho, B. R. Bull. Korean Chem. Soc. 2005, 26, 1017-1024. https://doi.org/10.5012/bkcs.2005.26.7.1017
  17. (g) Cho, B. R.; Pyun, S. Y. J. Org. Chem. 2007, 72 1098-1103. https://doi.org/10.1021/jo0612978
  18. (h) Pyun, S. Y.; Cho, E. J.; Seok, H. J.; Kim, J. C.; Lee, S. H.; Cho, B. R. Bull. Korean Chem. Soc. 2007, 28, 917-920. https://doi.org/10.5012/bkcs.2007.28.6.917
  19. (i) Pyun, S. Y.; Cho, E. J.; Seok, H. J.; Kim, J. C.; Lee, S. H.; Cho, B. R. J. Phy.Org. Chem. 2007, 20, 685-689. https://doi.org/10.1002/poc.1233
  20. Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456. https://doi.org/10.1021/ar00156a004
  21. Bernardi, F. J. Mol. Struct. 1988, 163, 173-177. https://doi.org/10.1016/0166-1280(88)80389-0
  22. Saigo, K.; Usui, M.; Kikuchi, K.; Shimada, E.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1977, 50, 1863-1866. https://doi.org/10.1246/bcsj.50.1863
  23. Cho, B. R.; Lee, S. J.; Kim, Y. K. J. Org. Chem. 1995, 60, 2072-2076. https://doi.org/10.1021/jo00112a030
  24. Inoue, M.; Bruice, T. C. J. Am. Chem. Soc. 1982, 104, 1644-1653. https://doi.org/10.1021/ja00370a033
  25. (a) Holmquist, B.; Bruice, T. C. J. Am. Chem. Soc Res. 1969, 91, 2993-3002. https://doi.org/10.1021/ja01039a029
  26. (b) Holmquist, B.; Bruice, T. C. J. Am. Chem. Soc. Res. 1969, 91, 3003-3006. https://doi.org/10.1021/ja01039a030
  27. Pratt, R. F.; Bruice, T. C. J. Am. Chem. Soc. 1970, 92, 5956-5964. https://doi.org/10.1021/ja00723a024
  28. (b) Inoue, M.; Bruice, T. C. J. Org. Chem. 1982, 47, 959-963.
  29. (a) William, A. J. Chem. Soc., Perkin Trans. 2 1972, 808-812.
  30. (b) William, A.; Douglas, K. T. Chem. Rev. 1975, 627-649.
  31. Tagaki, W.; Kobayashi, S.; Kurihara, K.; Kurashima, K.; Yoshida, Y.; Yano, J. J. Chem. Soc. Chem. Commun. 1976, 843-845.
  32. Broxton, T. J.; Duddy, N. W. J. Org. Chem. 1981, 46, 1186-1191. https://doi.org/10.1021/jo00319a028
  33. Chandrasekar, R.; Venkatasubramanian, N. J. Chem. Soc., Perkin Trans. 2 1982, 1625-1631.

Cited by

  1. NH in MeCN: Effects of Base Solvent and β-Aryl Group on the Ketene-forming Transition State vol.38, pp.11, 2017, https://doi.org/10.1002/bkcs.11285