DOI QR코드

DOI QR Code

Analysis of Images According to the Fluid Velocity in Time-of-Flight Magnetic Resonance Angiography, and Contrast Enhancement Angiography

  • Kim, Eng-Chan (Department of Physics, Yeungnam University) ;
  • Heo, Yeong-Cheol (Department of Radiology, Kyung Hee University Hospital at Gang-dong) ;
  • Cho, Jae-Hwan (Department of International Radiological Science, Hallym University of Graduate Studies) ;
  • Lee, Hyun-Jeong (Department of Physics, Yeungnam University) ;
  • Lee, Hae-Kag (Department of Computer Science and Engineering, Soonchunhyang University)
  • Received : 2014.04.12
  • Accepted : 2014.05.13
  • Published : 2014.06.30

Abstract

In this study we evaluated that flow rate changes affect the (time of flight) TOF image and contrast-enhanced (CE) in a three-dimensional TOF angiography. We used a 3.0T MR System, a nonpulsatile flow rate model. Saline was used as a fluid injected at a flow rate of 11.4 cm/sec by auto injector. The fluid signal strength, phantom body signal strength and background signal strength were measured at 1, 5, 10, 15, 20 and 25-th cross-section in the experienced images and then they were used to determine signal-to-noise ratio and contrast-to-noise ratio. The inlet, middle and outlet length were measured using coronal images obtained through the maximum intensity projection method. As a result, the length of inner cavity was 2.66 mm with no difference among the inlet, middle and outlet length. We also could know that the magnification rate is 49-55.6% in inlet part, 49-59% in middle part and 49-59% in outlet part, and so the image is generally larger than in the actual measurement. Signal-to-noise ratio and contrast-to-noise ratio were negatively correlated with the fluid velocity and so we could see that signal-to-noise ratio and contrast-to-noise ratio are reduced by faster fluid velocity. Signal-to-noise ratio was 42.2-52.5 in 5-25th section and contrast-to-noise ratio was from 34.0-46.1 also not different, but there was a difference in the 1st section. The smallest 3D TOF MRA measure was $2.51{\pm}0.12mm$ with a flow velocity of 40 cm/s. Consequently, 3D TOF MRA tests show that the faster fluid velocity decreases the signal-to-noise ratio and contrast-to-noise ratio, and basically it can be determined that 3D TOF MRA and 3D CE MRA are displayed larger than in the actual measurement.

Acknowledgement

Supported by : Soonchunhyang University

References

  1. H. J. Lee, O. K. Park, J. C. Kang, Y. K. Shin, S. L. Lee, and M. S. Jung. J. Korean. Med. Assoc. 34, 758 (1991).
  2. H. J. Myung, S. B. Lee, J. K. Rho, B. W. Y, W. Y. Lee, M. H. Kim, J. H. Kim, B. A. Wie, C. S. Chung, and O. S. Kwon, Korean J. Neurology 7, 179 (1989).
  3. I. H. Song, D. H. Oh, H. S. Kang, C. H. Cho, K. S. Kim, M. S. Kim, J. S. Song, and J. H. Bae, Korean J. Med. 43, 637 (1992).
  4. B. C. Lee, S. C. Jeong, S. H. Hwang, H. C. Kim, J. C. Bae, H. I. Ma, K. H. Yu, and I. H. Lee, Korean J. Stroke 1, 21 (1999).
  5. P. Schramm, P. D. Schellinger, E. Klotz, K. Kallenberg, J. B. Fiebach, S. Külkens, S. Heiland, M. Knauth, and K. Sartor, Stroke 35, 1652 (2004). https://doi.org/10.1161/01.STR.0000131271.54098.22
  6. S. K. Lee, Korean J. Stroke 10, 89 (2008).
  7. C. G. Choi, D. H. Lee, J. H. Lee, H. W. Pyun, D. W. Kang, S. U. Kwon, J. K. Kim, S. J. Kim, and D. C. Suh, AJNR Am. J. Neuroradiol 28, 439 (2007).
  8. J. E. Heiserman, B. P. Drayer, E. K. Fram, P. J. Keller, C. R. Bird, J. A. Hodak, and R. A. Flom, Radiology 182, 761 (1992). https://doi.org/10.1148/radiology.182.3.1535891
  9. J. E. Heiserman, B. P. Drayer, P. J. Keller, and E. K. Fram, Radiology 185, 667 (1992). https://doi.org/10.1148/radiology.185.3.1438743
  10. Y. Korogi, M. Takahashi, T. Nakagawa, N. Mabuchi, T. Watabe, Y. Shiokawa, H. Shiga, T. O'Uchi, H. Miki, Y. Horikawa, S. Fujiwara, and M. Furuse, AJNR Am. J. Neuroradiol 18, 135 (1997).
  11. A. H. Wilman, S. J. Riederer, B. F. King, J. P. Debbins, P. J. Rossman, and R. L. Ehman, Radiology 205, 137 (1997). https://doi.org/10.1148/radiology.205.1.9314975
  12. F. R. Korosec, R. Frayne, T. M. Grist, and C. A. Mistretta, Magn. Reson. Med. 36, 345 (1996). https://doi.org/10.1002/mrm.1910360304
  13. V. L. Yarnykh, M. Terashima, C. E. Hayes, A. Shimakawa, N. Takaya, P. K. Nguyen, J. H. Brittain, M. V. McConnell, and C. Yuan, J. Magn. Reson. Imaging 23, 691 (2006). https://doi.org/10.1002/jmri.20562
  14. J. M. U-King-Im, R. A. Trivedi, M. J. Graves, N. J. Higgins, J. J. Cross, B. D. Tom, W. Hollingworth, H. Eales, E. A. Warburton, P. J. Kirkpatrick, N. M. Antoun, and J. H. Gillard, Neurology 62, 1282 (2004). https://doi.org/10.1212/01.WNL.0000123697.89371.8D
  15. Q. Wu and M. H. Li, BMC Neurology 12, 1471 (2012).
  16. P. M. Ruggieri, G. A. Laub, T. J. Masaryk, and M. T. Modic, Intracranial circulation: pulse-sequence considerations in three-dimensional (volume) MR angiography. Radiology 171, 785 (1989). https://doi.org/10.1148/radiology.171.3.2717753
  17. J. S. Lewin and G. Laub, Intracranial MR angiography: a direct comparison of three time-of-flight techniques. AJNR Am. J. Neuroradiol. 12, 1133 (1991).
  18. C. Altin, JAVA applets for simulation of magnetic resonance imaging. The graduate school of natural and applied sciences, middle easttechnical university, 2008.
  19. T. S. Jung, Y. C. Lim, S. H. Seo, K. H. Kim, and E. H. Kim, J. Korean Radiol. Soc. 33, 189 (1995). https://doi.org/10.3348/jkrs.1995.33.2.189
  20. R. R. Edelman, H. P. Mattle, B. Wallner, R. Bajakian, J. Kleefield, C. Kent, J. J. Skillman, J. B. Mendel, and D. J. Atkinson, Radiology 177, 45 (1990). https://doi.org/10.1148/radiology.177.1.2399337
  21. C. M. Anderson, D. Saloner, J. S. Tsuruda, L. G. Shapeero and R. E. Lee, AJR Am. J. Roentgenol. 154, 623 (1990). https://doi.org/10.2214/ajr.154.3.2106232
  22. A. M. Masaryk, J. S. Ross, M. C. DiCello, M. T. Modic, L. Paranandi, and T. J. Masaryk, Radiology 178, 797 (1991). https://doi.org/10.1148/radiology.178.3.1994421
  23. K. Perktold, T. Kenner, D. Hilbert, B. Spork, and H. Florian, Basic. Res. Cardiol. 83, 24 (1988). https://doi.org/10.1007/BF01907101
  24. K. Perktold, J. Biomech. 20, 311 (1987). https://doi.org/10.1016/0021-9290(87)90297-1
  25. C. K. Choi, M. H. Han, J. H. Park, and K. H. Jang, J. Korean Radiol. Soc. 36, 729 (1997). https://doi.org/10.3348/jkrs.1997.36.5.729
  26. R. J. Alfidi, T. J. Masaryk, E. M. Haacke, G. W. Lenz, J. S. Ross, M. T. Modic, A. D. Nelson, J. P. LiPuma, and A. M. Cohen, AJR Am. J. Roentgenol. 149, 1097 (1987). https://doi.org/10.2214/ajr.149.6.1097
  27. G. W. Lenz, E. M. Haacke, T. J. Masaryk, and G. Laub, Radiology 166, 875 (1988). https://doi.org/10.1148/radiology.166.3.3340788
  28. C. Jackowski, E. Aghayev, M. Sonnenschein, R. Dirnhofer, and M. J. Thali, International Journal of Legal Medicine 120, 165 (2006). https://doi.org/10.1007/s00414-005-0050-1
  29. S. H. Shin and D. S. Hwang, JKSMRM 16, 67 (2012).
  30. E. K. Fishman, D. R. Ney, D. G. Heath, F. M. Corl, K. M. Horton, and P. T. Johnson, Radiographics 26, 905 (2006). https://doi.org/10.1148/rg.263055186
  31. J. Lee, T. S. Chung, K. Y. Lee, and S. H. Suh, J. Korean Soc. Magn. Reson. Med. 15, 234 (2011). https://doi.org/10.13104/jksmrm.2011.15.3.234

Cited by

  1. Analysis of Enlarged Images Using Time-of-Flight Magnetic Resonance Angiography, Computed Tomography, and Conventional Angiography vol.38, pp.12, 2014, https://doi.org/10.1007/s10916-014-0146-6