Analysis of Images According to the Fluid Velocity in Time-of-Flight Magnetic Resonance Angiography, and Contrast Enhancement Angiography

  • Kim, Eng-Chan (Department of Physics, Yeungnam University) ;
  • Heo, Yeong-Cheol (Department of Radiology, Kyung Hee University Hospital at Gang-dong) ;
  • Cho, Jae-Hwan (Department of International Radiological Science, Hallym University of Graduate Studies) ;
  • Lee, Hyun-Jeong (Department of Physics, Yeungnam University) ;
  • Lee, Hae-Kag (Department of Computer Science and Engineering, Soonchunhyang University)
  • Received : 2014.04.12
  • Accepted : 2014.05.13
  • Published : 2014.06.30


In this study we evaluated that flow rate changes affect the (time of flight) TOF image and contrast-enhanced (CE) in a three-dimensional TOF angiography. We used a 3.0T MR System, a nonpulsatile flow rate model. Saline was used as a fluid injected at a flow rate of 11.4 cm/sec by auto injector. The fluid signal strength, phantom body signal strength and background signal strength were measured at 1, 5, 10, 15, 20 and 25-th cross-section in the experienced images and then they were used to determine signal-to-noise ratio and contrast-to-noise ratio. The inlet, middle and outlet length were measured using coronal images obtained through the maximum intensity projection method. As a result, the length of inner cavity was 2.66 mm with no difference among the inlet, middle and outlet length. We also could know that the magnification rate is 49-55.6% in inlet part, 49-59% in middle part and 49-59% in outlet part, and so the image is generally larger than in the actual measurement. Signal-to-noise ratio and contrast-to-noise ratio were negatively correlated with the fluid velocity and so we could see that signal-to-noise ratio and contrast-to-noise ratio are reduced by faster fluid velocity. Signal-to-noise ratio was 42.2-52.5 in 5-25th section and contrast-to-noise ratio was from 34.0-46.1 also not different, but there was a difference in the 1st section. The smallest 3D TOF MRA measure was $2.51{\pm}0.12mm$ with a flow velocity of 40 cm/s. Consequently, 3D TOF MRA tests show that the faster fluid velocity decreases the signal-to-noise ratio and contrast-to-noise ratio, and basically it can be determined that 3D TOF MRA and 3D CE MRA are displayed larger than in the actual measurement.


Supported by : Soonchunhyang University


  1. H. J. Lee, O. K. Park, J. C. Kang, Y. K. Shin, S. L. Lee, and M. S. Jung. J. Korean. Med. Assoc. 34, 758 (1991).
  2. H. J. Myung, S. B. Lee, J. K. Rho, B. W. Y, W. Y. Lee, M. H. Kim, J. H. Kim, B. A. Wie, C. S. Chung, and O. S. Kwon, Korean J. Neurology 7, 179 (1989).
  3. I. H. Song, D. H. Oh, H. S. Kang, C. H. Cho, K. S. Kim, M. S. Kim, J. S. Song, and J. H. Bae, Korean J. Med. 43, 637 (1992).
  4. B. C. Lee, S. C. Jeong, S. H. Hwang, H. C. Kim, J. C. Bae, H. I. Ma, K. H. Yu, and I. H. Lee, Korean J. Stroke 1, 21 (1999).
  5. P. Schramm, P. D. Schellinger, E. Klotz, K. Kallenberg, J. B. Fiebach, S. Külkens, S. Heiland, M. Knauth, and K. Sartor, Stroke 35, 1652 (2004).
  6. S. K. Lee, Korean J. Stroke 10, 89 (2008).
  7. C. G. Choi, D. H. Lee, J. H. Lee, H. W. Pyun, D. W. Kang, S. U. Kwon, J. K. Kim, S. J. Kim, and D. C. Suh, AJNR Am. J. Neuroradiol 28, 439 (2007).
  8. J. E. Heiserman, B. P. Drayer, E. K. Fram, P. J. Keller, C. R. Bird, J. A. Hodak, and R. A. Flom, Radiology 182, 761 (1992).
  9. J. E. Heiserman, B. P. Drayer, P. J. Keller, and E. K. Fram, Radiology 185, 667 (1992).
  10. Y. Korogi, M. Takahashi, T. Nakagawa, N. Mabuchi, T. Watabe, Y. Shiokawa, H. Shiga, T. O'Uchi, H. Miki, Y. Horikawa, S. Fujiwara, and M. Furuse, AJNR Am. J. Neuroradiol 18, 135 (1997).
  11. A. H. Wilman, S. J. Riederer, B. F. King, J. P. Debbins, P. J. Rossman, and R. L. Ehman, Radiology 205, 137 (1997).
  12. F. R. Korosec, R. Frayne, T. M. Grist, and C. A. Mistretta, Magn. Reson. Med. 36, 345 (1996).
  13. V. L. Yarnykh, M. Terashima, C. E. Hayes, A. Shimakawa, N. Takaya, P. K. Nguyen, J. H. Brittain, M. V. McConnell, and C. Yuan, J. Magn. Reson. Imaging 23, 691 (2006).
  14. J. M. U-King-Im, R. A. Trivedi, M. J. Graves, N. J. Higgins, J. J. Cross, B. D. Tom, W. Hollingworth, H. Eales, E. A. Warburton, P. J. Kirkpatrick, N. M. Antoun, and J. H. Gillard, Neurology 62, 1282 (2004).
  15. Q. Wu and M. H. Li, BMC Neurology 12, 1471 (2012).
  16. P. M. Ruggieri, G. A. Laub, T. J. Masaryk, and M. T. Modic, Intracranial circulation: pulse-sequence considerations in three-dimensional (volume) MR angiography. Radiology 171, 785 (1989).
  17. J. S. Lewin and G. Laub, Intracranial MR angiography: a direct comparison of three time-of-flight techniques. AJNR Am. J. Neuroradiol. 12, 1133 (1991).
  18. C. Altin, JAVA applets for simulation of magnetic resonance imaging. The graduate school of natural and applied sciences, middle easttechnical university, 2008.
  19. T. S. Jung, Y. C. Lim, S. H. Seo, K. H. Kim, and E. H. Kim, J. Korean Radiol. Soc. 33, 189 (1995).
  20. R. R. Edelman, H. P. Mattle, B. Wallner, R. Bajakian, J. Kleefield, C. Kent, J. J. Skillman, J. B. Mendel, and D. J. Atkinson, Radiology 177, 45 (1990).
  21. C. M. Anderson, D. Saloner, J. S. Tsuruda, L. G. Shapeero and R. E. Lee, AJR Am. J. Roentgenol. 154, 623 (1990).
  22. A. M. Masaryk, J. S. Ross, M. C. DiCello, M. T. Modic, L. Paranandi, and T. J. Masaryk, Radiology 178, 797 (1991).
  23. K. Perktold, T. Kenner, D. Hilbert, B. Spork, and H. Florian, Basic. Res. Cardiol. 83, 24 (1988).
  24. K. Perktold, J. Biomech. 20, 311 (1987).
  25. C. K. Choi, M. H. Han, J. H. Park, and K. H. Jang, J. Korean Radiol. Soc. 36, 729 (1997).
  26. R. J. Alfidi, T. J. Masaryk, E. M. Haacke, G. W. Lenz, J. S. Ross, M. T. Modic, A. D. Nelson, J. P. LiPuma, and A. M. Cohen, AJR Am. J. Roentgenol. 149, 1097 (1987).
  27. G. W. Lenz, E. M. Haacke, T. J. Masaryk, and G. Laub, Radiology 166, 875 (1988).
  28. C. Jackowski, E. Aghayev, M. Sonnenschein, R. Dirnhofer, and M. J. Thali, International Journal of Legal Medicine 120, 165 (2006).
  29. S. H. Shin and D. S. Hwang, JKSMRM 16, 67 (2012).
  30. E. K. Fishman, D. R. Ney, D. G. Heath, F. M. Corl, K. M. Horton, and P. T. Johnson, Radiographics 26, 905 (2006).
  31. J. Lee, T. S. Chung, K. Y. Lee, and S. H. Suh, J. Korean Soc. Magn. Reson. Med. 15, 234 (2011).

Cited by

  1. Analysis of Enlarged Images Using Time-of-Flight Magnetic Resonance Angiography, Computed Tomography, and Conventional Angiography vol.38, pp.12, 2014,