DOI QR코드

DOI QR Code

Effect of Excess CuO on the Sintering Behavior and Piezoelectric Properties of Bi0.5(Na0.82K0.18)0.5TiO3 Ceramics

Bi0.5(Na0.82K0.18)0.5TiO3 세라믹스의 소결거동 및 압전 특성에 대한 과잉의 CuO 첨가 효과

  • Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Jang, Hyun-Deok (School of Materials Science and Engineering, University of Ulsan) ;
  • Heo, Dae-Jun (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Hyun-Young (School of Materials Science and Engineering, University of Ulsan) ;
  • Ahn, Kyoung-Kwan (School of Mechanical Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • 강진규 (울산대학교 첨단소재공학부) ;
  • 장현덕 (울산대학교 첨단소재공학부) ;
  • 허대준 (울산대학교 첨단소재공학부) ;
  • 이현영 (울산대학교 첨단소재공학부) ;
  • 안경관 (울산대학교 기계공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Received : 2014.04.11
  • Accepted : 2014.05.15
  • Published : 2014.06.01

Abstract

We investigated the effect of excess CuO on the sintering behavior, ferroelectric, and piezoelectric properties of lead-free $Bi_{0.5}(Na_{0.82}K_{0.18})_{0.5}TiO_3$ (BNKT) ceramics. The addition of excess CuO was found to greatly contribute to the densification and grain growth, however, excess CuO over 3 mol% was precipitated at grain boundaries after sintering. BNKT with 1~2 mol% CuO in excess sintered at $975^{\circ}C$ showed piezoelectric properties comparable to those of unmodified BNKT sintered at $1,175^{\circ}C$. These results seem meaningful for its application to low cost multilayer actuators (MLAs) because low firing ceramics make it possible to apply less expensive base metals to the inner electrode of MLAs.

Acknowledgement

Supported by : 한국연구재단

References

  1. K. Uchino and Takahashi, Curr. Opinion Solid State Mater. Sci., 1, 698 (1996). https://doi.org/10.1016/S1359-0286(96)80054-4
  2. J. Pritchard, C. R. Bowen, and F. Lowrie, Brit. Ceram. Trans., 100, 1 (2001). https://doi.org/10.1179/096797801681116
  3. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  4. T. R. Shrout and S. J. Zhang, J. Electroceram., 19, 111 (2007).
  5. J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, and T. Granzow, J. Am. Ceram. Soc., 92, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  6. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, Jpn. J. Appl. Phys., 38, 5564 (1999). https://doi.org/10.1143/JJAP.38.5564
  7. K. Yoshii, Y. Hiruma, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 45, 4493 (2006). https://doi.org/10.1143/JJAP.45.4493
  8. N. V. Quyet, H. S. Han, K. J. Kim, D. D. Dang, K. K. Ahn, and J. S. Lee, J. Alloys Compds., 511, 273 (2012).
  9. H. S. Han, W. Jo, J. K. Kang, C. W. Ahn, I. W. Kim, K. K. Ahn, and J. S. Lee, J. Appl. Phys., 113, 154102 (2013). https://doi.org/10.1063/1.4801893
  10. T. H. Dinh, H. Y. Lee, C. H. Yoon, R. A. Malik, Y. M. Kong, and J. S. Lee, J. Kor. Phys. Soc., 62, 1004 (2013). https://doi.org/10.3938/jkps.62.1004
  11. X. Chao, D. Ma, R. Gu, and Z. Yang, J. Alloys Compds., 491, 698 (2010). https://doi.org/10.1016/j.jallcom.2009.11.048
  12. C. F. Yang, L. Wu, and T. S. Wu, J. Mater. Sci., 27, 6573 (1992). https://doi.org/10.1007/BF01165938
  13. H. Y. Park, J. Y. Choi, M. K. Choi, K. H. Cho, S. Nahm, H. G. Lee, and H. W. Kang, J. Am. Ceram. Soc., 91, 2374 (2008). https://doi.org/10.1111/j.1551-2916.2008.02408.x
  14. W. Jo, J. B. Ollagnier, J. L. Park, E. M. Anton, O. J. Kwon, C. Park, H. H. Seo, J. S. Lee, E. Erdem, R. A. Eichel, and J. Rödel, J. Eur. Ceram. Soc., 31, 2107 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.008