DOI QR코드

DOI QR Code

Dielectric Relaxation Properties of KNN-BT Ceramics with (Ba,Ca)SiO3 Glass Frit

(Ba,Ca)SiO3 Glass Frit 첨가에 따른 NKN-BT 세라믹스의 유전 완화 특성

  • Bae, Seon Gi (Department of Electrical Engineering, Incheon National University) ;
  • Shin, Hyeo-Kyung (Department of Electrical Engineering, Incheon National University) ;
  • Lee, Seung-Hwan (R&D Center, Samwha Capacitor Co., Ltd.) ;
  • Im, In-Ho (Electrical Engineering, Shinansan University)
  • 배선기 (인천대학교 전기공학과) ;
  • 신혜경 (인천대학교 전기공학과) ;
  • 이승환 (삼화콘덴서공업(주) R&D Center) ;
  • 임인호 (신안산대학교 전기과)
  • Received : 2014.05.02
  • Accepted : 2014.05.15
  • Published : 2014.06.01

Abstract

We investigated dielectric relaxation properties of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics by addition (0~0.3 wt%) of $(Ba,Ca)SiO_3$ glass frit. All composition of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ added $(Ba,Ca)SiO_3$ glass frit showed the same crystallographic properties, coexistence of orthorhombic and tetragonal phase. By increasing addition of $(Ba,Ca)SiO_3$ glass frit, the Curie temperatures of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics were decreased, whereas maximum dielectric constants of $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics were dramatically increased. Especially the deviations of Curie temperature $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics were increased by increasing amount of $(Ba,Ca)SiO_3$ glass frit, and it indicated that $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3$ ceramics added $(Ba,Ca)SiO_3$ glass frit have relaxor characteristics.

Acknowledgement

Supported by : 인천대학교

References

  1. G. A. Smolensky and A. I. Agranovskaya, Sov. Phys. Tech. Phys., 3, 1380 (1958).
  2. G. A. Smolensky, J. Phys. Soc. Jpn., 28, 26 (1970).
  3. C. G. F. Stenger and A. J. Burggraaf, Phys. Stat. Sol., 61, 275 (1980). https://doi.org/10.1002/pssa.2210610132
  4. P. M. Vilarinho, L. Zhou, M. Pokle, N. Marques, and J. L. Baptista, J. Am. Ceram. Soc., 83, 1149 (2000).
  5. S. W. Choi, T. R. Shrout, S. I. Jang, and A. S. Shalla, Ferroelectrics, 100, 29 (1989). https://doi.org/10.1080/00150198908007897
  6. F. Bahri, H. Khemakhem, M. Gargouri, A. Simon, R. Von der Muhll, and J. Ravez, Solid State Sci., 5, 1235 (2003). https://doi.org/10.1016/S1293-2558(03)00180-8
  7. J. Rayez and A. Simon, Solid State Sci., 1, 25 (1999). https://doi.org/10.1016/S1293-2558(00)80062-X
  8. H. Ogihara, C. Randall, and S. Trolier-McKinstry, J. Am. Ceram. Soc., 92, 110 (2009). https://doi.org/10.1111/j.1551-2916.2008.02798.x
  9. S. G. Bae, H. G. Shin, E. Y. Son, and I. H. Im, Trans. Electr. Electron. Mater., 14, 78 (2013). https://doi.org/10.4313/TEEM.2013.14.2.78
  10. I. H. Im, S. H. Lee, H. K. Kim, D. H. Lee, S. H. Kim, Y. S. Yun, Y. K. Choi, and S. P. Nam, Journal of Ceramic Processing Research, 15, 26 (2014).
  11. Y. Saito, H. Takao, I. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  12. L. E. Cross, Ferroelectrics, 151, 11 (1994). https://doi.org/10.1080/00150199408244717
  13. J. Ravez and A. Simon, Mater. Lett., 36, 81 (1998). https://doi.org/10.1016/S0167-577X(98)00008-1