Helicobacter pylori vacA d1 Genotype Predicts Risk of Gastric Adenocarcinoma and Peptic Ulcers in Northwestern Iran

  • Basiri, Zeinab (Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz) ;
  • Safaralizadeh, Reza (Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz) ;
  • Bonyadi, Morteza Jabbarpour (Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz) ;
  • Somi, Mohammad Hossein (Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences) ;
  • Mahdavi, Majid (Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz) ;
  • Latifi-Navid, Saeid (Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili)
  • Published : 2014.02.28


Background: There is a close relationship between Helicobacter pylori (H pylori)-specific factors and different gastroduodenal diseases. The present study aimed to investigate the prevalence of vacA d1, d2 genotypes in the H pylori isolates from patients with gastric adenocarcinoma, peptic ulcer disease (PUD) and gastritis in East Azerbaijan region, where the incidence of gastric cancer (GC) is high. Strains isolated from this area are likely to be of European ancestry. Materials and Methods: In this study, genotyping of the vacA d region of 115 isolates obtained from patients with different gastrodoudenal diseases was accomplished by PCR methods. In addition to PCR amplification of H pylori 16S rDNA, rapid urease tests or histological examination were used to confirm the presence of H pylori in biopsy specimens. Data were collected and analyzed using SPSS version 19. Results: Of the total of 83 H pylori isolates, 36 (43.4%) contained the d1 allele and 47 (56.6%) were subtype d2. The results of the multiple linear/logistic regression analysis showed high correlation between allele d1 and gastric adenocarcinoma or PUD. Conclusions: This study suggests that the H pylori vacA d1 genotype helps predict risk for gastric adenocarcinoma and PUD in East Azerbaijan, Iran.


  1. Weiss J, Mecca J, da Silva E, et al (1994). Comparison of PCR and other diagnostic techniques for detection of Helicobacter pylori infection in dyspeptic patients. J Clin Microbiol, 32, 1663-8.
  2. Suzuki R, Shiota S, Yamaoka Y (2012). Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. Infect Genet Evol, 12, 203-13.
  3. van Doorn LJ, Figueiredo C, Sanna R, et al (1998). Expanding allelic diversity of Helicobacter pylori vacA. J Clin Microbiol, 36, 2597-603.
  4. Wang KJ, Wang RT (2003). Meta-analysis on the epidemiology of Helicobacter pylori infection in China. Zhonghua Liu Xing Bing Xue Za Zhi, 24, 443-6 (in Chinese).
  5. Westbrook JI, Duggan AE, Duggan JM, et al (2005). A 9 year prospective cohort study of endoscoped patients with upper gastrointestinal symptoms. Eur J Epidemiol, 20, 619-27.
  6. Willen R, Carlen B, Wang X, et al (2000). Morphologic conversion of Helicobacter pylori from spiral to coccoid form. Scanning (SEM) and transmission electron microscopy (TEM) suggest viability. Ups J Med Sci, 105, 31-40.
  7. Xia Y, Yamaoka Y, Zhu Q, et al (2009). A comprehensive sequence and disease correlation analyses for the C-terminal region of CagA protein of Helicobacter pylori. PLoS One, 4, 7736.
  8. Yamaoka Y, Orito E, Mizokami M, et al (2002). Helicobacter pylori in North and South America before Columbus. FEBS Lett, 517, 180-4.
  9. Yamazaki S, Yamakawa A, Okuda T,et al (2005). Distinct diversity of vacA, cagA, and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan. J Clin Microbiol, 43, 3906-16.
  10. Yim JY, Kim N, Choi SH, et al (2007). Seroprevalence of Helicobacter pylori in South Korea. Helicobacter, 12, 333-40.
  11. Parkin DM, Bray F, Ferlay J, et al (2005). Global cancer statistics, 2002. CA Cancer J Clin, 55, 74-108.
  12. Nouraie M, Latifi-Navid S, Rezvan H, et al (2009). Childhood hygienic practice and family education status determine the prevalence of Helicobacter pylori infection in Iran. Helicobacter, 14, 40-6.
  13. Ogiwara H, Sugimoto M, Ohno T, et al (2009). Role of deletion located between the intermediate and middle regions of the Helicobacter pylori vacA gene in cases of gastroduodenal diseases. J Clin Microbiol, 47, 3493-500.
  14. Parkin DM (2006). The global health burden of infectionassociated cancers in the year 2002. Int J Cancer, 118, 3030-44.
  15. Parsonnet J, Friedman GD, Vandersteen DP, et al (1991). Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med, 325, 1127-31.
  16. Peek RM, Jr, Fiske C, et al (2010). Role of innate immunity in Helicobacter pylori-induced gastric malignancy. Physiol Rev, 90, 831-58.
  17. Rhead JL, Letley DP, Mohammadi M,et al (2007). A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology, 133, 926-36.
  18. Satomi S, Yamakawa A, Matsunaga S, et al (2006). Relationship between the diversity of the cagA gene of Helicobacter pylori and gastric cancer in Okinawa, Japan. J Gastroenterol, 41, 668-73.
  19. Somi MH, Farhang S, Mirinezhad SK, et al (2008). Cancer in East Azerbaijan, Iran: results of a population-based cancer registry. Asian Pac J Cancer Prev, 9, 327-30.
  20. Suerbaum S, Michetti P (2002). Helicobacter pylori infection. N Engl J Med, 347, 1175-86.
  21. Fujisawa T, Kumagai T, Akamatsu T, et al (1999). Changes in seroepidemiological pattern of Helicobacter pylori and hepatitis A virus over the last 20 years in Japan. Am J Gastroenterol, 94, 2094-9.
  22. Derakhshan MH, Yazdanbod A, Sadjadi AR, et al (2004). High incidence of adenocarcinoma arising from the right side of the gastric cardia in NW Iran. Gut, 53, 1262-6.
  23. Dixon MF, Genta RM, Yardley JH, et al (1996). Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol, 20, 1161-81.
  24. Engstrand L (1992). Helicobacter pylori. New diagnostic tools. Clinical and experimental studies on local and systemic immune response. Minireview based on a doctoral thesis. Ups J Med Sci, 97, 1-26.
  25. Huang JQ, Zheng GF, Sumanac K, et al (2003). Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology, 125, 1636-44.
  26. Latifi-Navid S, Ghorashi SA, Siavoshi F, et al (2010). Ethnic and geographic differentiation of Helicobacter pylori within Iran. PLoS One, 5.
  27. Latifi-Navid S, Mohammadi S, Maleki P, et al (2013). Helicobacter pylori vacA d1/-i1 genotypes and geographic differentiation between high and low incidence areas of gastric cancer in Iran. Arch Iran Med, 16, 330-7.
  28. Lu Y, Redlinger TE, Avitia R, et al (2002). Isolation and genotyping of Helicobacter pylori from untreated municipal wastewater. Appl Environ Microbiol, 68, 1436-9.
  29. Nguyen LT, Uchida T, Murakami K, et al (2008). Helicobacter pylori virulence and the diversity of gastric cancer in Asia. J Med Microbiol, 57, 1445-53.
  30. Alizadeh AH, Ansari S, Ranjbar M, et al (2009). Seroprevalence of Helicobacter pylori in Nahavand: a population-based study. East Mediterr Health J, 15, 129-35.
  31. Atherton JC (2006). The pathogenesis of Helicobacter pyloriinduced gastro-duodenal diseases. Annu Rev Pathol, 1, 63-96.
  32. Atherton JC, Cao P, Peek RM, et al (1995). Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem, 270, 17771-7.
  33. Azuma T, Yamakawa A, Yamazaki S, et al (2004). Distinct diversity of the cag pathogenicity island among Helicobacter pylori strains in Japan. J Clin Microbiol, 42, 2508-17.
  34. Blaser MJ (1999). Hypothesis: the changing relationships of Helicobacter pylori and humans: implications for health and disease. J Infect Dis, 179, 1523-30.
  35. Coleman MP, Esteve J, Damiecki P, et al (1993). Trends in cancer incidence and mortality. IARC Sci Publ, 121, 1-806.
  36. Cover TL, Tummuru MK, Cao P, et al (1994). Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem, 269, 10566-73.

Cited by

  1. Prevalence and Risk Factors of H. pylori from Dyspeptic Patients in Northwest Ethiopia: A Hospital Based Cross-sectional Study vol.15, pp.11, 2014,
  2. Helicobacter Pylori vacA d1 Genotype is associated with Gastric Cancer but not Peptic Ulcers in Kurdistan Region, Northern Iraq vol.15, pp.14, 2014,
  3. Investigation of Association between oipA and iceA1/iceA2 Genotypes of Helicobacter pylori and Gastric Cancer in Iran vol.15, pp.19, 2014,
  4. Virulence Genes of Helicobacter pylori in Gastritis, Peptic Ulcer and Gastric Cancer in Laos vol.15, pp.20, 2014,
  5. Lack of Association of the MDR1 C3435T Polymorphism with Susceptibility to Gastric Cancer and Peptic Ulcer: a Systemic Review and Meta-analysis vol.15, pp.7, 2014,
  6. Anti-Proliferation Effects and Molecular Mechanisms of Action of Tetramethypyrazine on Human SGC-7901 Gastric Carcinoma Cells vol.15, pp.8, 2014,
  7. Helicobacter pylori cytotoxin-associated gene A activates tumor necrosis factor-α and interleukin-6 in gastric epithelial cells through P300/CBP-associated factor-mediated nuclear factor-κB p65 acetylation vol.12, pp.4, 2015,
  8. Helicobacter pylori Infection Impacts on Functional Dyspepsia in Thailand vol.15, pp.24, 2015,
  9. High Efficacy of Levofloxacin-Dexlansoprazole-Based Quadruple Therapy as a First Line Treatment for Helicobacter pylori Eradication in Thailand vol.16, pp.10, 2015,
  10. Risk Factors and Epidemiology of Gastric Cancer in Pakistan vol.16, pp.12, 2015,
  11. Seven-Day Bismuth-based Quadruple Therapy as an Initial Treatment for Helicobacter pylori Infection in a High Metronidazole Resistant Area vol.16, pp.14, 2015,
  12. A 3ʹ-end Region Polymorphism to Gastric Cancer vol.21, pp.4, 2015,
  13. Identification of Gastric Cancer-Related Strains of Helicobacter pylori: Findings from Single Biopsy Specimens for PCR and Campylobacter-Like Organism Test vol.10, pp.2, 2016,
  14. Helicobacter pylori vacA i region polymorphism but not babA2 status associated to gastric cancer risk in northwestern Iran vol.16, pp.1, 2016,
  15. Relationship between vacA Types and Development of Gastroduodenal Diseases vol.8, pp.6, 2016,
  16. Two populations of less-virulent Helicobacter pylori genotypes in Bangladesh vol.12, pp.8, 2017,
  17. Helicobacter pylori virulence genes of minor ethnic groups in North Thailand vol.9, pp.1, 2017,
  18. Association between IL-1β polymorphisms and gastritis risk vol.96, pp.5, 2017,