DOI QR코드

DOI QR Code

Implementation of Proteomics for Cancer Research: Past, Present, and Future

  • Karimi, Parisa ;
  • Shahrokni, Armin ;
  • Nezami Ranjbar, Mohammad R.
  • Published : 2014.03.30

Abstract

Cancer is the leading cause of the death, accounts for about 13% of all annual deaths worldwide. Many different fields of science are collaborating together studying cancer to improve our knowledge of this lethal disease, and find better solutions for diagnosis and treatment. Proteomics is one of the most recent and rapidly growing areas in molecular biology that helps understanding cancer from an omics data analysis point of view. The human proteome project was officially initiated in 2008. Proteomics enables the scientists to interrogate a variety of biospecimens for their protein contents and measure the concentrations of these proteins. Current necessary equipment and technologies for cancer proteomics are mass spectrometry, protein microarrays, nanotechnology and bioinformatics. In this paper, we provide a brief review on proteomics and its application in cancer research. After a brief introduction including its definition, we summarize the history of major previous work conducted by researchers, followed by an overview on the role of proteomics in cancer studies. We also provide a list of different utilities in cancer proteomics and investigate their advantages and shortcomings from theoretical and practical angles. Finally, we explore some of the main challenges and conclude the paper with future directions in this field.

Keywords

Proteomics;cancer;biomarkers;mass spectrometry;bioinformatics

References

  1. Hanash SM, Baik CS, Kallioniemi O (2011). Emerging molecular biomarkers-blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol, 8, 142-50. https://doi.org/10.1038/nrclinonc.2010.220
  2. Gray J, Chattopadhyay D, Beale GS, et al (2009). A proteomic strategy to identify novel serum biomarkers for liver cirrhosis and hepatocellular cancer in individuals with fatty liver disease. BMC Cancer, 9, 271. https://doi.org/10.1186/1471-2407-9-271
  3. Gstaiger M, Aebersold R (2009). Applying mass spectrometrybased proteomics to genetics, genomics and network biology. Nat Rev Genet, 10, 617-27. https://doi.org/10.1038/nrg2633
  4. Hainaut P, Plymoth A (2011). Biomarkers in cancer research and treatment: promises and challenges. Curr Opin Oncol, 23, 61. https://doi.org/10.1097/CCO.0b013e328341623e
  5. Hanash SM, Pitteri SJ, Faca VM (2008). Mining the plasma proteome for cancer biomarkers. Nature, 452, 571-9. https://doi.org/10.1038/nature06916
  6. Hatakeyama H, Kondo T, et al (2006). Protein clusters associated with carcinogenesis, histological differentiation and nodal metastasis in esophageal cancer. Proteomics, 6, 6300-16. https://doi.org/10.1002/pmic.200600488
  7. Hooshmand S, Ghaderi A, Yusoff K, et al (2013). Downregulation of RhoGDI$\alpha$ increased migration and invasion of ER+MCF7 and ER? MDA-MB-231 breast cancer cells. Cell Adh Migr, 7, 297-303. https://doi.org/10.4161/cam.24204
  8. International Cancer Genome Consortium, Hudson TJ, Anderson W, et al (2010). International network of cancer genome projects. Nature, 464, 993-8. https://doi.org/10.1038/nature08987
  9. IBM Corp. Released 2011. IBM SPSS Statistics for Windows, V. A., NY: IBM Corp.
  10. Jacquemier J, Ginestier C, Rougemount J, et al (2005). Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res, 65, 767-79.
  11. Ferlay J, Shin HR, Bray F, et al (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 127, 2893-917. https://doi.org/10.1002/ijc.25516
  12. Edwards BK, Ward E, Kohler BA, et al (2010). Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer, 116, 544-73. https://doi.org/10.1002/cncr.24760
  13. Etzioni R, Urban N, Ramsey S, et al (2003). The case for early detection. Nat Rev Cancer, 3, 243-52. https://doi.org/10.1038/nrc1041
  14. Fan Y, Wang J, Yang Y, et al (2010). Detection and identification of potential biomarkers of breast cancer. J Cancer Res Clin Oncol, 136, 1243-54. https://doi.org/10.1007/s00432-010-0775-1
  15. Ferrari M (2005). Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 5, 161-71. https://doi.org/10.1038/nrc1566
  16. Fujita Y, Nakanishi T, Hiramatsu M, et al (2006). Proteomicsbased approach identifying autoantibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma. Clin Cancer Res, 12, 6415-20. https://doi.org/10.1158/1078-0432.CCR-06-1315
  17. Ghabaee M, Bayati A, Amir Saroukolaei, et al (2009). Analysis of HLA DR2&DQ6 (DRB1* 1501, DQA1* 0102, DQB1* 0602) haplotypes in Iranian patients with multiple sclerosis. Cell Mol Neurobiol, 29, 109-14. https://doi.org/10.1007/s10571-008-9302-1
  18. Gold L, Ayers D, Bertino J, et al (2010). Aptamer-based multiplexed proteomic technology for biomarker discovery. PloS One, 5, 15004. https://doi.org/10.1371/journal.pone.0015004
  19. Goncalves A, Charafe-Jauffret E, Bertucci F, et al (2008). Protein profiling of human breast tumor cells identifies novel biomarkers associated with molecular subtypes. Mol Cell Proteomics, 7, 1420-33. https://doi.org/10.1074/mcp.M700487-MCP200
  20. Gortzak-Uzan L, Ignatchenko A, Evangelou Al, et al (2007). A proteome resource of ovarian cancer ascites: integrated proteomic and bioinformatic analyses to identify putative biomarkers. J Proteome Res, 7, 339-51.
  21. Boja ES, Rodriguez H (2012). Mass spectrometry based targeted quantitative proteomics: Achieving sensitive and reproducible detection of proteins. Proteomics, 12, 1093-110. https://doi.org/10.1002/pmic.201100387
  22. Bai Z, Ye Y, Liang B, et al (2011). Proteomics-based identification of a group of apoptosis-related proteins and biomarkers in gastric cancer. Int J Oncol, 38: 375-83.
  23. Baker ES, Liu T, Petyuk VA, et al (2012). Mass spectrometry for translational proteomics: progress and clinical implications. Genome Med, 4, 1-11. https://doi.org/10.1186/gm300
  24. Bhati A, Garg H, Gupta A, et al (2012). Omics of cancer. Asian Pac J Cancer Prev, 13, 4229-33. https://doi.org/10.7314/APJCP.2012.13.9.4229
  25. Brower V (2011). Epigenetics: Unravelling the cancer code. Nature, 471, 12-3. https://doi.org/10.1038/471S12a
  26. Cao Y, DePinho RA, Ernst M, Vousden (2011). Cancer research: past, present and future. Nat Rev Cancer, 11, 749-54. https://doi.org/10.1038/nrc3138
  27. Castronovo V, Kischel P, Guillonneau F, et al (2007). Identification of specific reachable molecular targets in human breast cancer using a versatile ex vivo proteomic method. Proteomics, 7, 1188-96. https://doi.org/10.1002/pmic.200600888
  28. Chandra H, Reddy PJ, Srivastava S (2011). Protein microarrays and novel detection platforms. Expert Rev Proteomics, 8, 61-79. https://doi.org/10.1586/epr.10.99
  29. Chang R, Shoemaker R, Wang W (2011). Systematic search for recipes to generate induced pluripotent stem cells. PLoS Comput Biol, 7, 1002300. https://doi.org/10.1371/journal.pcbi.1002300
  30. Coghlin C, Murray GI (2013). Progress in the identification of plasma biomarkers of colorectal cancer. Proteomics, 13 2227-8. https://doi.org/10.1002/pmic.201300245
  31. Collins BC, Lau TY, O'Connor DP, Hondermarck H (2009). Cancer proteomics-an evolving battlefield. Conference on Cancer Proteomics 2009: Mechanistic Insights, Technological Advances & Molecular Medicine. EMBO reports, 10, 1202-5. https://doi.org/10.1038/embor.2009.222
  32. Ardekani AM, Akhondi MM, Sadeghi MR (2008). Application of genomic and proteomic technologies to early detection of cancer. Arch Iran Med, 11, 427-34.
  33. Moghanibashi M, Rastgar Jazii F, Soheili ZS, et al (2013). Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1. Funct Integr Genomics, 13, 253-60. https://doi.org/10.1007/s10142-013-0320-9
  34. Maurer HH (2010). Perspectives of liquid chromatography coupled to low-and high-resolution mass spectrometry for screening, identification, and quantification of drugs in clinical and forensic toxicology. Ther Drug Monit, 32, 324-7. https://doi.org/10.1097/FTD.0b013e3181dca295
  35. Mishra A, Verma M (2010). Cancer biomarkers: are we ready for the prime time? Cancers, 2, 190-208. https://doi.org/10.3390/cancers2010190
  36. Moghanibashi M, Jazii FR, Soheili ZS, et al (2012). Proteomics of a new esophageal cancer cell line established from Persian patient. Gene, 500, 124-33. https://doi.org/10.1016/j.gene.2012.03.038
  37. Martin KJ, Fournier MV, Reddy GP, Pardee AB (2010). A need for basic research on fluid-based early detection biomarkers. Cancer Res, 70, 5203-6. https://doi.org/10.1158/0008-5472.CAN-10-0987
  38. Montazery-Kordy H, Miran-Baygi MH, Moradi MH (2008). A data-mining approach to biomarker identification from protein profiles using discrete stationary wavelet transform. J Zhejiang Univ Sci B, 9, 863-70. https://doi.org/10.1631/jzus.B0820163
  39. Nezami Ranjbar MR, Zhao Y, Tadesse MG, Wang Y, Ressom HW (2013) Gaussian process regression model for mormalization of LC-MS data using scan-level information. Proteome Sci, 11, 13. https://doi.org/10.1186/1477-5956-11-13
  40. Nicolini C, Pechkova E (2010). An overview of nanotechnologybased functional proteomics for cancer and cell cycle progression. Anticancer Res, 30, 2073-80.
  41. Orvisky ES, Drake K, Martin BM, et al (2006). Enrichment of low molecular weight fraction of serum for MS analysis of peptides associated with hepatocellular carcinoma. Proteomics, 6, 2895-902. https://doi.org/10.1002/pmic.200500443
  42. Karimi P, Modarresi SZ, Sahraian MA, et al (2013). The relation of multiple sclerosis with allergy and atopy: a case control study. Iran J Allergy Asthma Immunol, 12, 182-9.
  43. Jazii FR, Najafi Z, Malekzadeh R, et al (2006). Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol, 12, 7104-12.
  44. Kamangar F, Karimi P (2013). The state of nutritional epidemiology: why we are still unsure of what we should eat?. Arch Iran Med, 16, 483-6.
  45. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F (2014). Gastric cancer: descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev, In Press.
  46. Karimi P, Shahrokni A, Moradi S (2013). Evidence for U.S. Preventive Services Task Force (USPSTF) Recommendations against routine mammography for females between 40-49 years of age. Asian Pac J Cancer Prev, 14, 2137-9. https://doi.org/10.7314/APJCP.2013.14.3.2137
  47. Kent W J, Sugnet CW, Furey TS, et al (2002). The human genome browser at UCSC. Genome Res, 12, 996-1006. https://doi.org/10.1101/gr.229102.ArticlepublishedonlinebeforeprintinMay2002
  48. Kocevar N, Odreman F, Vindigni A, Grazio SF, Komel R (2012). Proteomic analysis of gastric cancer and immunoblot validation of potential biomarkers. World J Gastroenterol, 18, 1216-28. https://doi.org/10.3748/wjg.v18.i11.1216
  49. Li G, Xiao Z, Liu J, et al (2011). Cancer: a proteomic disease. Sci China Life Sci, 54, 403-8.
  50. Li J, Zhang Z, Rosenzweig J, Wang YY, Chan DW (2002). Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clin Chem, 48, 1296-304.
  51. Lopez E, Wesselink JJ, Lopez I, et al (2011). Technical phosphoproteomic and bioinformatic tools useful in cancer research. J Clin Bioinforma, 1, 26. https://doi.org/10.1186/2043-9113-1-26
  52. Uemura N, Nakanishi Y, Kato H, et al (2009). Transglutaminase 3 as a prognostic biomarker in esophageal cancer revealed by proteomics. Int J Cancer, 124, 2106-15. https://doi.org/10.1002/ijc.24194
  53. Yanagisawa K, Tomida S Shimada Y, et al (2007). A 25-Signal proteomic signature and outcome for patients with resected non-small-cell lung cancer. J Natl Cancer Inst, 99, 858-67. https://doi.org/10.1093/jnci/djk197
  54. Yang F, Xiao ZQ, Zhang XZ, et al (2007). Identification of tumor antigens in human lung squamous carcinoma by serological proteome analysis. J Proteome Res, 6, 751-8. https://doi.org/10.1021/pr0602287
  55. Yousefi Z, Sarvari J, Nakamura K, et al (2012). Secretomic analysis of large cell lung cancer cell lines using two-dimensional gel electrophoresis coupled to mass spectrometry. Folia Histochem Cytobiol, 50, 368-74. https://doi.org/10.5603/FHC.2012.0050
  56. Tan HT, Lee YH, Chung MC (2012). Cancer proteomics. Mass Spectrom Rev, 31, 583-605. https://doi.org/10.1002/mas.20356
  57. Thiviyanathan V, Gorenstein DG (2012). Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl, 6, 563-73. https://doi.org/10.1002/prca.201200042
  58. Varghese RS, Zhou B, Nezami Ranjbar MR, Zhao Y, Resson HW (2012). Ion annotation-assisted analysis of LC-MS based metabolomic experiment. Proteome Sci, 21, 1477-5956.
  59. Walther TC, Mann M (2010). Mass spectrometry-based proteomics in cell biology. J Cell Biol, 190, 491-500. https://doi.org/10.1083/jcb.201004052
  60. Wang J-J, Liu Y, Zheng Y (2012). Comparative proteomics analysis of colorectal cancer. Asian Pac J Cancer Prev, 13, 1663-6. https://doi.org/10.7314/APJCP.2012.13.4.1663
  61. Wang P, Whiteaker JR, Paulovich AG (2009). The evolving role of mass spectrometry in cancer biomarker discovery. Cancer Biol Ther, 8, 1083-94.
  62. Wu CC, Chen HC, Chen SJ, et al (2008). Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics, 8, 316-32. https://doi.org/10.1002/pmic.200700819
  63. Wulfkuhle JD, Liotta LA, Petriccoin EF (2003). Proteomic applications for the early detection of cancer. Nat Rev Cancer, 3, 267-75. https://doi.org/10.1038/nrc1043
  64. Wulfkuhle JD, Paweletz CP, Steeg PS, Petricoin EF 3rd, Liotta L (2003). Proteomic approaches to the diagnosis, treatment, and monitoring of cancer. Adv Exp Med Biol, 532, 59-68. https://doi.org/10.1007/978-1-4615-0081-0_7
  65. Xiao JF, Varghese RS, Zhou B, et al (2012). LC-MS based serum metabolomics for identification of hepatocellular carcinoma biomarkers in Egyptian Cohort. J Proteome Res, 11, 5914-23.
  66. Smith RA, Cokkinides V, von Wschenbach AC, et al (2002). American Cancer Society guidelines for the early detection of cancer. CA Cancer J Clin, 52, 8-22. https://doi.org/10.3322/canjclin.52.1.8
  67. Sadat Tabatabaei Mirakabad F, Nejati-Koshki K, Akbarzadeh A, et al (2014) PLGA-Based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev, 15, 517-35. https://doi.org/10.7314/APJCP.2014.15.2.517
  68. Shahrokni A, Karimi P (2012). Geriatric assessment in geriatric oncology; the evolution of authors' network from 2000 to 2012. J Geriatr Oncol, 3, 78-9.
  69. Siegel R, Naishadham D, Jemal A (2013). Cancer statistics, 2013. CA Cancer J Clin, 63, 11-30. https://doi.org/10.3322/caac.21166
  70. Sousa JF, Ham AJ, Whitwell C, et al (2012). Proteomic profiling of paraffin-embedded samples identifies metaplasia-specific and early-stage gastric cancer biomarkers. Am J Pathol, 181, 1560-72. https://doi.org/10.1016/j.ajpath.2012.07.027
  71. Paul D, Kumar A, Gajbhiye A, Santra MK, Srikanth R (2013). Mass spectrometry-based proteomics in molecular diagnostics: discovery of cancer biomarkers using tissue culture. Biomed Res Int, 2013, 783131.
  72. Srinivas PR, Verma M, Zhao Y, Srivastava S (2002). Proteomics for cancer biomarker discovery. Clin Chem, 48, 1160-9.
  73. Stoevesandt O, Taussig MJ, He M (2009). Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics, 6, 145-57. https://doi.org/10.1586/epr.09.2
  74. Strassberger V, Fugmann T, Neri D, Roesli C (2010). Chemical proteomic and bioinformatic strategies for the identification and quantification of vascular antigens in cancer. J Proteomics, 73, 1954-73. https://doi.org/10.1016/j.jprot.2010.05.018
  75. Sun W, Xing B, Sun Y, et al (2007). Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics, 6, 1798-808. https://doi.org/10.1074/mcp.M600449-MCP200
  76. Rahman SM, Gonzalez AL Li M, et al (2011). Lung cancer diagnosis from proteomic analysis of preinvasive lesions. Cancer Res, 71, 3009-17. https://doi.org/10.1158/0008-5472.CAN-10-2510
  77. Pei H, Zhu H, Zeng S, et al (2007). Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer. J Proteome Res, 6, 2495-501. https://doi.org/10.1021/pr060644r
  78. Pepe MS, Etzioni R, Feng Z, et al (2001). Phases of biomarker development for early detection of cancer. J Natl Cancer Inst, 93, 1054-61. https://doi.org/10.1093/jnci/93.14.1054
  79. Poste G (2012). Biospecimens, biomarkers, and burgeoning data: the imperative for more rigorous research standards. Trends Mol Med, 18, 717-22. https://doi.org/10.1016/j.molmed.2012.09.003
  80. Ransohoff DF, Gourlay ML (2010). Sources of bias in specimens for research about molecular markers for cancer. J Clin Oncol, 28, 698-704. https://doi.org/10.1200/JCO.2009.25.6065
  81. Ray S, Reddy PJ, Jain R, et al (2011). Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics, 11, 2139-61. https://doi.org/10.1002/pmic.201000460
  82. Ressom HW, Xiao JF Tuli L, et al (2012). Utilization of metabolomics to identify serum biomarkers for hepatocellular carcinoma in patients with liver cirrhosis. Anal Chim Acta, 19, 90-100.
  83. Rezaee AR, Azadi A, Houshmand M, et al (2013). Mitochondrial and nuclear genes as the cause of complex I deficiency. Genet Mol Res, 12, 3551-4. https://doi.org/10.4238/2013.September.12.1
  84. Rual JF, Venkatesan K, Hao T, et al (2005). Towards a proteomescale map of the human protein-protein interaction network. Nature, 437, 1173-8. https://doi.org/10.1038/nature04209
  85. Rusling JF, Kumar CV, Gutkind JS, et al (2010). Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst, 135, 2496-511. https://doi.org/10.1039/c0an00204f

Cited by

  1. Proteome–Metabolome Profiling of Ovarian Cancer Ascites Reveals Novel Components Involved in Intercellular Communication vol.13, pp.12, 2014, https://doi.org/10.1074/mcp.M114.041194
  2. Effects of Hypobaric Conditions on Apoptosis Signalling Pathways in HeLa Cells vol.15, pp.12, 2014, https://doi.org/10.7314/APJCP.2014.15.12.5043
  3. Pemetrexed Induces G1 Phase Arrest and Apoptosis through Inhibiting Akt Activation in Human Non Small Lung Cancer Cell Line A549 vol.16, pp.4, 2015, https://doi.org/10.7314/APJCP.2015.16.4.1507
  4. Antioxidant, Anticancer and Anticholinesterase Activities of Flower, Fruit and Seed Extracts of Hypericum amblysepalum HOCHST vol.16, pp.7, 2015, https://doi.org/10.7314/APJCP.2015.16.7.2763
  5. Polycyclic aromatic hydrocarbons and childhood asthma vol.30, pp.2, 2015, https://doi.org/10.1007/s10654-015-9988-6