The Study of Ibuprofen Degradation Properties by Combination of Wave Energy (Ultrasound, Ultraviolet) and Persulfate Ion

파 에너지 (자외선, 초음파)/과황산나트륨을 이용한 이부프로펜 분해특성 연구

  • Na, Seungmin (Department of Civil Environmental and Architecture, Korea University) ;
  • Ahn, Yungyong (Korea Basic Science Institute) ;
  • Cui, Mingcan (Department of Civil Environmental and Architecture, Korea University) ;
  • Son, Younggu (Department of Civil Environmental and Environmental Engineering, Kumoh National Institute of Technology) ;
  • Khim, Jeehyeong (Department of Civil Environmental and Architecture, Korea University)
  • 나승민 (고려대학교 건축사회환경공학과) ;
  • 안윤경 (한국기초과학지원연구원, 서울센터 분석연구부) ;
  • ;
  • 손영규 (금오공과대학교 토목환경공학과) ;
  • 김지형 (고려대학교 건축사회환경공학과)
  • Received : 2013.08.07
  • Accepted : 2014.04.18
  • Published : 2014.05.30


In this study, ibuprofen(IBP) degradation by the photochemical ($UV/S_2O{_8}^{2-}$) and sonochemical ($US/S_2O{_8}^{2-}$) processes was examined under various parameters, such as UV ($10{\sim}40{\pm}5W/L$) and US ($50{\sim}90{\pm}5W/L$) power density, optimum dosage of persulfate ion ($S_2O{_8}^{2-}$), temperature ($20{\sim}60^{\circ}C$) and anions effect ($Cl^-$, $HCO_3{^-}$, $CO{_3}^{2-}$). The pseudo-first-order degradation rate constants were in the order of $10^{-1}$ to $10^{-5}min^{-1}$ depending on each processes. The synergistic effect of IBP degradation in $UV/S_2O{_8}^{2-}$ and $US/S_2O{_8}^{2-}$ processes could investigated, due to the generation of $SO_4{^-}$ radical. This result can confirm from the produced $H_2O_2$ and $SO{_4}^{2-}$ concentration in each processes. IBP degradation rate affected by the $S_2O{_8}^{2-}$ dosage, temperature, power and anion existence parameters. In particular, IBP degradation rate increased with the increase of the temperature ($60^{\circ}C$) and applied power density (UV:$40{\pm}5W/L$, US:$90{\pm}5W/L$). On the other hand, anions effect on the IBP degradation was negative, due to the anion play as a the scavenger of radical.




Supported by : 한국연구재단


  1. Tarr, M. A., 2003, Chemical degradation methods for wastes and pollutants, Basel, Marcel Dekker, Inc., New York.
  2. Wang, J., Pan, Z., Zhang, Z., Zhang, X., Wen, F., Ma, T., Jiang, Y., Wang, L., Xu, L., Kang, P.,2006, Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities, Ultrason. Sonochem., 13, 493-500.
  3. Wang, D., Oppenlander, T., Ei-Din, M. G., Bolton, J. R., 2010, Comparison of the disinfection effects of vacuum-UV (VUV) and UV light on Bacillussubtilis pores in aqueous suspensions at 172, 222 and 254 nm, Photochem. Photobiol., 86, 176-181.
  4. Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., Niu, R., 2010, Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peoxide, J. Haz. Mat., 179, 552-558.
  5. Drinking Water Qulity Standard, 2011, Ministry of Environment, Korea.
  6. Nachiappan, S., Muthukumar, K., 2013, Treatment of pharmaceutical effluent by ultrasound coupled with dual oxidant system, Environ. Technol., 34, 209-217.
  7. Na, S. M. Ahn, Y. Y. Cui, M. C. Cho, S. H. Khim, J. H. 2011, Degradation Characteritic of Endocrine Disruptors (DEP, NP) using Combined Advanced Oxidation Processes (AOPs), J. Environ. Sci, Inter., 20(2), 2231-2239.
  8. Na, S. M. Cai, J. H. Shin, D. H. Cui, M. C. Khim, J. H. 2012, (a) The Study of DEP degradation properties by combination US and UV lamp of different wavelength, J. Environ. Sci, Inter., 21(7), 845-853.
  9. Na, S., Ahn, Y. G., Cui, M., Khim, J., 2012, (b) Significant diethyl phthalate(DEP) degradation by combined advanced oxidation processin aqueous solution, J. Environ. Manage., 101, 104-110.
  10. Salari, D., Daneshvar, N., Niaei, A., Aber, S., Rasoulifard, M. H., 2008, The photo-oxidative destruction of C. I. Basic yellow2 using UV/$S_2O_8\;^{2-}$ processin an annular photoreactor, J. Environ. Sci, Health Part A, 43,,657-663.
  11. Shin, D. H. Na, S. M. Cai, J. H. Khim, J. H. 2012, Effect of initial pH removal of dichloroacetonitrile in photocatalytic ozonation by using compound parabolic concentrator modules, Korean Soci. Haz. Mitiga., 12(4), 225-231.
  12. Stasinakis, A.S., Gatidou, G., Mamais, D., Thomaidis, N.S., Lekkas, T. D., 2008, Occurrence andfate of endocrine disrupters in Greek sewage treatment plants, Water Res., 42, 1796-1804.
  13. Tan, C., Gao, N., Deng, Y., Rong, W., Zhou, S., Lu, N., 2013, Degradation of antipyrine by heat activated persulfate, Sep. Purifi. Tech., 109, 122-128.
  14. Kommerer, K., 2003, Significance of antibiotic in the environment, J. Antimicrob. Chemother., 52, 5-7.
  15. Hua, I., Hoffmann, M. R., 1997, Optimization of ultrasonic irradiation as an advanced oxidation technology, Environ. Sci. Technol., 31, 2237-2243.
  16. Khataee, A. R., Mirzajani, O., 2010, UV/peroxydisulfate oxidation of C.I. Basic Blue 3: Modeling of key factors by artificial neural network, Desalination, 251, 64-69.
  17. Kim, S. H. Lim, M. H. Khim, J. H. 2004. A Study on the Sonolysis of Chlorinated Compounds, J. Korea Soci. Waste Manage., 21(2), 162-172.
  18. Lau, T. K., Chu, W., Graham, N., 2005, The degradation of endocrine disruptor di-n-butyl phthalate by UV irradiation: a photolysis and product study, Chemosphere., 60, 1045-1053.
  19. Lau, T. K., Chu, W., Graham, N. J. D., 2007, The aqueous degradation of butylated hydroxyanisole by UV/$S_2O_8\;^{2-}$: study of reaction mechanism via dimerization and mineralization, ES&T., 41, 613-619.
  20. Lim, M, H., Kim, S. H., Kim, Y. U., Khim, J., 2007, Sonolysis of chlorinated compounds in aqueous solution, Ultrason. Sonochem., 14, 93-98.
  21. Li, B., Li, L., Lin, K., Zhang, W., Lu, S., Luo, Q., 2013, Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process, Ultrason. Sonochem., 20, 855-863.
  22. Manousaki, E., Psillakis, E., Kalogerakis, N., Mantzavinos, D., 2004, Degradation of sodium dodecylbenzene sulfonate in water by ultasonic irradiation, Water Res., 38, 3751-3759.
  23. Mendez-Arriaga, F., Torres-Palma, R. A., Petrier, C., Esplugas, S., Gimenez, J., Pulgarin, C., 2008, Ultrasonic treatment of watercontaminated with ibuprofen, Water Res., 42, 4243-4248.
  24. Cai, J. H. Na, S. M. Ahn, Y. Y. Lee, S. B. Khim, J. H. 2012, Degradation Properties of Ibuprofen using Photocatalytic Process, J. Environ. Sci, Inter., 21(4), 411-419.
  25. Bagal, M. V., Lele, B. J., Gogate, P. R., 2013, Removal of 2,4-dinitrophenol using hybrid methods based on ultrasound at an operating capacity of 7L, Ultrason. Sonochem., 20, 1217-1225.
  26. Beckeet, M.A., Hua, I., 2001, Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry, J. Phys. Chem., 105, pp. 3796-3802.
  27. Bennedsen, L, R., Muff, J., Sogaard, E. G., 2012, Influence of chloride and carbonates on the reactivity of activated persulfate, Chemosphere, 86, 1092-1097.
  28. Chen, W. S., Su, Y. C., 2012, Removal of dinitrotoluenes in wastewater by sono-activated persulfate, Ultrason. Sonochem., 19, 921-927.
  29. FDA, 1998, Guidance for industry: environmental assessment of human drug and biologics applications.
  30. Gao, Y, Q., Gao, N, Y., Deng, Y., Yang, Y. Q., Ma, Y., 2012, Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water, Chem. Eng. J., 195-196, 248-253.
  31. Grcic, I., Papic, S., Koprivanac, N., Kovacic, I., 2012, Kinetic modeling and synergy quantification in sono and photooxidative treatment of simulated dyehouse effluent, Water Res., 46, 5683-5695.
  32. Gu, X., Lu, S., Qiu, Z., Banks, C. J., Imai, T., Lin, K., Luo, Q., 2013, Photodegradation performance of 1,1,1-trichloroethane in aqueous solution: in the presence and absence of persulfate, Chem. Eng. J., 215-216, 29-35.
  33. Huang, Y. F., Huang, Y. H., 2009, Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-$Na_2S_2O_8/H_2O_2$-Fe(II, III) two-stage oxidation process, J. Haz. Mat., 162, 1211-1216.