DOI QR코드

DOI QR Code

Zeolites: Their Features as Pressure Swing Adsorbents and CO2 Adsorption Capacity

제올라이트: 압력순환형 흡착제로서의 특성과 CO2 흡착성능

  • Received : 2014.01.02
  • Accepted : 2014.04.17
  • Published : 2014.05.30

Abstract

Industrial gas drying, dilute gas mixtures purification, air fractionation, hydrogen production from steam reformers and petroleum refinery off-gases, etc are conducted by using adsorptive separation technology. The pressure swing adsorption (PSA) has certain advantages over the other methods, such as absorption and membrane, that are a low energy requirement and cost-effectiveness. A key component of PSA systems is adsorbents that should be highly selective to a gas being separated from its mixture streams and have isotherms suitable for the operation principle. The six standard types of isotherms have been examined in this review, and among them the best behavior in the adsorption of $CO_2$ as a function of pressure was proposed in aspects of maximizing a working capacity upon excursion between adsorption and desorption cycles. Zeolites and molecular sieves are historically typical adsorbents for such PSA applications in gas and related industries, and their physicochemical features, e.g., framework, channel structure, pore size, Si-to-Al ratio (SAR), and specific surface area, are strongly associated with the extent of $CO_2$ adsorption at given conditions and those points have been extensively described with literature data. A great body of data of $CO_2$ adsorption on the nanoporous zeolitic materials have been collected according to pressure ranges adsorbed, and these isotherms have been discussed to get an insight into a better $CO_2$ adsorbent for PSA processes.

Keywords

Adsorbents;Zeolites;Adsorptive $CO_2$ separation;Pressure swing adsorption;Isotherms

References

  1. Yaghi, O. M., Li, G., Li, H., 1995, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706. https://doi.org/10.1038/378703a0
  2. Wilson, S. T., Broach, R. W., Blackwell, C. S., Bateman, C. A., McGuire, N. K., Kirchner, R. M., 1999, Synthesis, characterization and structure of SAPO-56, a member of the ABC double-six-ring family of materials with stacking sequence AABBCCBB, Micropor. Mesopor. Mater., 28, 125-197. https://doi.org/10.1016/S1387-1811(98)00293-5
  3. Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., Flanigen, E. M., 1982, Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 104, 1146-1147. https://doi.org/10.1021/ja00368a062
  4. Xu, X., Zhao, X., Sun, L., Liu, X., 2008, Adsorption separation of carbon dioxide, methane, and nitrogen on H${\beta}$ and Na-exchanged ${\beta}$-zeolite, J. Natural Gas Chem., 17, 391-396. https://doi.org/10.1016/S1003-9953(09)60015-3
  5. Yamamoto, K., Plevert, J., Uneme, M., Tatsumi, T., 2002, Synthesis, characterization and catalysis of UTM-1: An MTF-type zeolite composed of the same building unit as MFI-type zeolites, Micropor. Mesopor. Mater., 55, 81-91. https://doi.org/10.1016/S1387-1811(02)00408-0
  6. Yang, R. T., 2003, Adsorbents: Fundamental and Applications, John Wiley & Sons, Hoboken, 1-410.
  7. Zones, S. I., 1985, Zeolite SSZ-13 and its method of preparation, U.S. Patent 4,544,538.
  8. Zukal, A., Mayerova, J., Kubu, 2010, Adsorption of carbon dioxide on high-silica zeolites with different framework topology, Top. Catal., 53, 136-1366.
  9. Thomas, B., Ramu, V. G., Gopinath, S., George, J., Kurian, M., Laurent, G., Drisko, G. L., Sugunan, S., 2011, Catalytic acetalization of carbonyl compounds over cation ($Ce^{3+}$, $Fe^{3+}$ and $Al^{3+}$) exchanged montmorillonites and $Ce^{3+}$-exchanged Y zeolites, Appl. Clay Sci., 53, 227-235. https://doi.org/10.1016/j.clay.2011.01.021
  10. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., Mirodatos, C., 2009, Natural gas treating by selective adsorption: material science and chemical engineering interplay, Chem. Eng. J., 155, 553-566. https://doi.org/10.1016/j.cej.2009.09.010
  11. Taramasso, M., Perego, G., Notari, B., 1983, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, U.S. Patent 4,410,501A.
  12. Taylor, W. H., 1930, The crystal structure of analcite $(NaAlSi_2O_6{\cdot}H_2O)$, Z. Kristallogr., 74, 1-19 (in German).
  13. UNEP (the United Nations Environment Programme), 2013, The emissions gap report 2013: A UNEP synthesis report, Nairobi, Kenya.
  14. Walton, K. S., Abney, M. B., LeVan, M. D., 2006, $CO_2$ Adsorption in Y and X zeolites modified by alkali metal cation exchange, Micropor. Mesopor. Mater., 91, 78-84. https://doi.org/10.1016/j.micromeso.2005.11.023
  15. Wang, Q., Luo, J., Zhong, Z., Borgna, A., 2011, $CO_2$ capture by solid adsorbents and their applications: Current status and new trends, Energy Environ. Sci., 4, 42-55. https://doi.org/10.1039/c0ee00064g
  16. Wei, X., Smirniotis, P. G., 2006, Development and characterization of mesoporosity in ZSM-12 by desilication, Micropor. Mesopor. Mater., 97, 97-106. https://doi.org/10.1016/j.micromeso.2006.01.024
  17. Weigel, O., Steinhoff, E., 1925, Adsorption of organic liquid vapors by chabazite, Z. Kristallogr., 61, 125-154 (in German).
  18. Sing, K. S. W., 1982, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 54, 2201-2218.
  19. Robson, H. E., Shoemaker, D. P., Ogilvie, R. A., Manor, P. C., 1973, Synthesis and crystal structure of zeolite Rho-A new zeolite related to Linde Type A, Adv. Chem., 121, 106-115. https://doi.org/10.1021/ba-1973-0121.ch009
  20. Schimmel, H. G., Kearley, G. J., Nijkamp, M. G., Visserl, C. T., de Jong, K. P., Mulder, F. M., 2003, Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals, Chem. Eur. J., 9, 4764-4770. https://doi.org/10.1002/chem.200304845
  21. Schlenker, J. L., Higgins, J. B., Valyocsik, E. W., 1990, The framework topology of ZSM-57: A new synthetic zeolite, Zeolites, 10, 293-296. https://doi.org/10.1016/0144-2449(94)90143-0
  22. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T., 1985, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57, 603-619.
  23. Sircar, S., 2006, Basic research needs for design of adsorptive gas separation processes, Ind. Eng. Chem. Res., 45, 5435-5448. https://doi.org/10.1021/ie051056a
  24. Siriwardane, R. V., Shen, M. S., Fisher, E. P., 2003, Adsorption of $CO_2$, $N_2$, and $O_2$ on natural zeolites, Energy Fuels, 17, 571-576. https://doi.org/10.1021/ef020135l
  25. Siriwardane, R. V., Shen, M. S., Fisher, E. P., Poston, J. A., 2001, Adsorption of $CO_2$ on molecular sieves and activated carbon, Energy Fuels, 15, 279-284. https://doi.org/10.1021/ef000241s
  26. Stewart, A., Johnson, D. W., Shannon, M. D., 1988, Synthesis and characterisation of crystalline aluminosilicate sigma-1, Stud. Surf. Sci. Catal., 37, 57-64. https://doi.org/10.1016/S0167-2991(09)60582-6
  27. Suzuki, M., 1994, Activated carbon fiber: Fundamentals and applications, Carbon, 32, 577-586. https://doi.org/10.1016/0008-6223(94)90075-2
  28. Plevert, J., Yamamoto, K., Chiari, G., Tatsumi, T., 1999, UTM-1: An eight-membered ring zeolite with the basic building chains of the MFI topology, J. Phys. Chem. B, 8647-8649.
  29. Palomino, M., Corma, A., Jorda, J. L., Rey, F., Valencia, S., 2012, Zeolite Rho: A highly selective adsorbent for $CO_2$/$CH_4$ separation induced by a structural phase modification, Chem. Commun., 48, 215-217. https://doi.org/10.1039/c1cc16320e
  30. Palomino, M., Corma, A., Rey, F., Valencia, S., 2010, New insights on $CO_2$-methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs, Langmuir, 26, 1910-1917. https://doi.org/10.1021/la9026656
  31. Pamba, M., Maurin, G., Devautour, S., Vanderschueren, J., Giuntini, J. C., Renzo, F. D., Hamidi, F., 2000, Influence of framework Si/Al ratio on the $Na^+$/mordenite interaction energy, Phys. Chem. Chem. Phys., 2, 2027-2031 https://doi.org/10.1039/b001217n
  32. Portilla, M. T., Llopis, F. J., Martinez, C., Valencia, S., Corma, A., 2011, Structure-reactivity relationship for aromatics transalkylation and isomerization process with TNU-9, MCM-22 and ZSM-5 zeolites, and their industrial implications, Appl. Catal. A, 393, 257-268. https://doi.org/10.1016/j.apcata.2010.12.009
  33. Prakash, A. M., Hartmann, M. H., Kevan, L., 1998, SAPO-35 molecular sieve: Synthesis, characterization and adsorbate interactions of Cu(II) in CuH-SAPO-35, Chem. Mater., 10, 932-941. https://doi.org/10.1021/cm9707521
  34. Rachwalik, R., Olejniczak, Z., Sulikowski, B., 2005, Dealumination of ferrierite type zeolite: Physicochemical and catalytic properties, Catal. Today, 101, 147-154. https://doi.org/10.1016/j.cattod.2005.01.012
  35. Reed, T. B., Breck, D. W., 1956, Crystalline zeolites. II. Crystal structure of synthetic zeolite, Type A, J. Am. Chem. Soc., 78, 5972-5977. https://doi.org/10.1021/ja01604a002
  36. Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M., Yaghi, O. M., 2006, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186-10191. https://doi.org/10.1073/pnas.0602439103
  37. Muller, M., Harvey, G., Prins, R., 2000, Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with $SiCl_4$ by $^1H$, $^{29}Si$ and $^{27}Al$ MAS NMR, Micropor. Mesopor. Mater., 34, 135-147. https://doi.org/10.1016/S1387-1811(99)00167-5
  38. Palomino, M., Corma, A., Jorda, J. L., Rey, F., Valencia, S., 2012, Zeolite rho: A highly selective adsorbent for $CO_2$/$CH_4$ separation induced by a structural phase modification, Chem. Commun., 48, 215-217. https://doi.org/10.1039/c1cc16320e
  39. Park, J. W., Lee, J. Y., Kim, K. S., Hong, S. B., Seo, G., 2008, Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions, Appl. Catal. A, 339, 36-44. https://doi.org/10.1016/j.apcata.2008.01.005
  40. Pauling, L., 1930, The structure of some sodium and calcium aluminosilicates, PNAS, 16, 453-459. https://doi.org/10.1073/pnas.16.7.453
  41. Pawlesa, J., Zukal, A., Cejka, J., 2007, Synthesis and adsorption investigations of zeolites MCM-22 and MCM-49 modified by alkali metal cations, Adsorption, 13, 257-265. https://doi.org/10.1007/s10450-007-9023-7
  42. Petrovic, I., Navrotsky, A., 1997, Thermochemistry of Na-faujasites with varying Si/Al ratios, Micropor. Mater., 9, 1-12. https://doi.org/10.1016/S0927-6513(96)00060-0
  43. Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M., Yaghi, O. M., 2010, Synthesis, structure and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res., 43, 58-67. https://doi.org/10.1021/ar900116g
  44. McEwen, J., Hayman, J. D., Yazaydin, A. O., 2013, A comparative study of $CO_2$, $CH_4$ and $N_2$ adsorption in ZIF-8, zeolite-13X and BPL activated carbon, Chem. Phys., 412, 72-76. https://doi.org/10.1016/j.chemphys.2012.12.012
  45. Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R., Liu, J., 2012, Progress in adsorption-based $CO_2$ capture by metal-organic frameworks, Chem. Soc. Rev., 41, 2308-2322. https://doi.org/10.1039/c1cs15221a
  46. Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., Flanigen, E. M., 1984, Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 106, 6092-6093. https://doi.org/10.1021/ja00332a063
  47. McBain, J. W., 1932, The Sorption of Gases and Vapors by Solids, G. Routledge & Sons, London, 167-176.
  48. Mertens, M., Stromaier, K. G., 2004, Process for manufacture of molecular sieves, U.S. Patent 6,773,688.
  49. Miller, M. A., Lewis, G. J., Moscoso. J. G., Koster, S., Modica, F., Gatter, M. G., Nemeth, L. T., 2007, Synthesis and catalytic activity of UZM-12, Stud. Surf. Sci. Catal., 170, 487-492. https://doi.org/10.1016/S0167-2991(07)80881-0
  50. Millward, A. R., Yaghi, O. M., 2005, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127, 17998-17999. https://doi.org/10.1021/ja0570032
  51. Milton, R. M., 1989, Molecular sieve science and technology: a historical perspective, in: Occelli, M. L., Robson, H. E. (eds.), Zeolite Synthesis, ACS Symposium Series 398, American Chemical Society, Washington D.C., 1-10.
  52. Miyamoto, M., Fujioka, Y., Yogo, K., 2012, Pure silica CHA type zeolite for $CO_2$ separation using pressure swing adsorption at high pressure, J. Mater. Chem., 22, 20186-20189. https://doi.org/10.1039/c2jm34597h
  53. Leonard, R. J., 1927, The hydrothermal alteration of certain silicate minerals, Econ. Geol., 22, 18-43. https://doi.org/10.2113/gsecongeo.22.1.18
  54. Lee, J. K., Kim, Y. J., Lee, H. J., Kim, S. H., Cho, S. J., Nam, I. S., Hong S. B., 2011, Iron-substituted TNU-9, TNU-10, and IM-5 zeolites and their steam-activated analogs as catalysts for direct $N_2O$ decomposition, J. Catal., 284, 23-33. https://doi.org/10.1016/j.jcat.2011.08.012
  55. Lee, J. H., Park, M. B., Lee, J. K., Min, H. K., Song, M. K., Hong, S. B., 2010, Synthesis and characterization of ERI-type UZM-12 zeolites and their methanolto-olefin performance, J. Am. Chem. Soc., 132, 12971-12982. https://doi.org/10.1021/ja105185r
  56. Lee, S. H., Shin, C. H., Choi, G. J., Park, T. J., Nam, I. S., Han, B., Hong, S. B., 2003, Zeolite synthesis in the presence of flexible diquaternary alkylammonium ions $(C_2H_5)_3N^+(CH_2)_nN^+(C_2H_5)_3$ with n=3-10 as structure-directing agents, Micropor. Mesopor. Mater., 60, 237-249. https://doi.org/10.1016/S1387-1811(03)00381-0
  57. Lewis, G. J., Miller, M. A., Moscoso, J. G., Wilson, B. A., Knight, L. M., Wilson, S. T., 2004a, Experimental charge density matching approach to zeolite synthesis, Stud. Surf. Sci. Catal., 154A, 364-372.
  58. Lewis, G. J., Jan, D. Y., Mezza, B. J., Moscoso, J. G., Miller, M. A., Wilson, B. A., Wilson, S. T., 2004b, UZM-4: A stable Si-rich form of the BPH framework type, Stud. Surf. Sci. Catal., 154A, 118-125.
  59. Li, S., Falconer, J. L., Noble, R. D., 2004, SAPO-34 membranes for $CO_2$/$CH_4$ separation, J. Membr. Sci., 241, 121-135. https://doi.org/10.1016/j.memsci.2004.04.027
  60. Li, J. R., Kuppler, R. J., Zhou, H. C., 2009, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477-1504. https://doi.org/10.1039/b802426j
  61. Li, Y., Yi, H., Tang, X., Li, F., Yuan, Q., 2013, Adsorption separation of $CO_2$/$CH_4$ gas mixture on the commercial zeolites at atmosphere pressure, Chem. Eng. J., 229, 50-56. https://doi.org/10.1016/j.cej.2013.05.101
  62. Kulprathipanja, S., James, R. B., 2010, Overview in zeolites adsorptive separation, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 173-202.
  63. Kim, M. H.,, Choi, S. O., Choo, S. T., 2013, Capability of $CO_2$ on metal-organic frameworks-based porous adsorbents and their challenges to pressure swing adsorption applications, Clean Technol., 19, in press.
  64. Kim, S. H., Park, M. B., Min, H. K., Hong. S. B., 2009, Zeolite synthesis in the tetraethylammonium-tetramethylammonium mixed-organic additive system, Micropor. Mesopor. Mater., 123, 160-168. https://doi.org/10.1016/j.micromeso.2009.03.039
  65. Krishna, R., van Baten, J. M., 2012, A comparison of the $CO_2$ capture characteristics of zeolites and metal-organic frameworks, Sep. Purif. Technol., 87, 120-126. https://doi.org/10.1016/j.seppur.2011.11.031
  66. Kuznicki, S. M., 1989, Large-pored crystalline titanium molecular sieve zeolites, U.S. Patent 4,853,202.
  67. Kuznicki, S. M., Trush, K. A., Allen, F. M., Levine, S. M., Hamil, M. M., Hayhurst, D. T., Mansom, M., 1992, Synthesis and adsorptive properties of titanium silicate molecular sieves, in: Ocelli, M. L. and Robson, H. E. (eds.), Synthesis of Microporous Materials, Molecular Sieves, Vol. 1, Van Nostrand Reinhold, New York, 427-453.
  68. Lee, S. H., Lee, D. K., Shin, C. H., Paik, W. C., Lee, W. M., Hong, S. B., 2000, Synthesis of zeolite ZSM-57 and its catalytic evaluation for the 1-butene skeletal isomerization and n-octane cracking, J. Catal., 196, 158-166. https://doi.org/10.1006/jcat.2000.3031
  69. Kim, T. J., Ahn, W. S., Hong, S. B., 1996, Synthesis of zeolite ferrierite in the absence of inorganic cations, Micropor. Mater., 7, 35-40. https://doi.org/10.1016/0927-6513(96)00024-7
  70. Han, B., Lee, S. H., Shin, C. H., Cox, P. A., Hong, S. B., 2005, Zeolite synthesis using flexible diquaternary alkylammoniumions $(C_nH_{2n+1})_2HN^+(CH_2)_5N^+H(C_nH_2_{n+1})_2$ with n=1-5 as structure-directing agents, Chem. Mater., 17, 477-486. https://doi.org/10.1021/cm048418+
  71. Flanigen, E. M., Broach, R. W., Wilson, S. T., 2010, Introduction, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1-26 and therein references.
  72. Goj, A., Sholl, D. S., Akten, E. D., Kohen, D., 2002, Atomistic simulations of $CO_2$ and $N_2$ adsorption in silica zeolites: The impact of pore size and shape, J. Phys. Chem. B, 106, 8367-8375. https://doi.org/10.1021/jp025895b
  73. Gregg, S. J., Sing, K. S. W., 1982, Adsorption, surface area and porosity, 2nd ed., Academic Press, London, 1-303.
  74. Hong, S. B., 2008, Use of flexible diquaternary structure-directing agents in zeolite synthesis: Discovery of zeolites TNU-9 and TNU-10 and their catalytic properties, Catal. Surv. Asia, 12, 131-144. https://doi.org/10.1007/s10563-008-9045-5
  75. Hudson, M. R., Queen, W. L., Mason, J. A., Fickel, D. W., Lobo, R. F., Brown, C. M., 2012, Unconventional, highly selective $CO_2$ adsorption in zeolite SSZ-13, J. Am. Chem. Soc., 134, 1970-1973. https://doi.org/10.1021/ja210580b
  76. Inui, T., Kang, M., 1997, Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion, Appl. Catal. A, 164, 211-223. https://doi.org/10.1016/S0926-860X(97)00172-5
  77. El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., Cote, A. P., Taylor, R. E., O'Keeffe, M., Yaghi, O. M., 2007, Designed synthesis of 3D covalent organic frameworks, Science, 316, 268-272. https://doi.org/10.1126/science.1139915
  78. IZA, 2013, http://www.iza-structure.org/databases/.
  79. Juntgen, H., 1977, New applications for carbonaceous adsorbents, Carbon, 15, 273-283. https://doi.org/10.1016/0008-6223(77)90030-6
  80. Diaz, E., Munoz, E., Vega, A., Ordonez, S., 2008, Enhancement of the $CO_2$ retention capacity of X zeolites by Na-and Cs-treatments, Chemosphere, 70, 1375-1382. https://doi.org/10.1016/j.chemosphere.2007.09.034
  81. de St Claire-Deville, H., 1862, Reproduction de la levyne, Comptes rendus hebdomadaires des seances de l'Academie des sciences, 54, 324-327 (in French).
  82. Delgado, J. A., Uguina, M. A., Gomez, J. M., Ortega, L., 2006, Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na-and H-mordenite at high pressures, Sep. Purif. Technol., 48, 223-228. https://doi.org/10.1016/j.seppur.2005.07.027
  83. Densakulprasert, N., Wannatong, L., Chotpattananont, D., Hiamtup, P., Sirivat, A., Schwank, J., 2005, Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO, Mater. Sci. Eng. B, 117, 276-282. https://doi.org/10.1016/j.mseb.2004.12.006
  84. Dunne, S. R., 2010, Industrial gas phase adsorptive separations, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 273-305.
  85. Dunne, J. A., Mariwala, R., Rao, M., Sircar, S., Gorte, R. J., Myers, A. L., 1996a, Calorimetric heats of adsorption and adsorption isotherms. 1. $O_2$, $N_2$, Ar, $CO_2$, $CH_4$, $C_2H_6$, and $SF_6$ on silicalite, Langmuir, 12, 5888-5895. https://doi.org/10.1021/la960495z
  86. Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., Myers, A. L., 1996b, Calorimetric heats of adsorption and adsorption isotherms. 2. $O_2$, $N_2$, Ar, $CO_2$, $CH_4$, $C_2H_6$, and $SF_6$ on NaX, H-ZSM-5, and Na-ZSM-5 zeolites, Langmuir, 12, 5896-5904. https://doi.org/10.1021/la960496r
  87. D'Alessandro, D. M., Smit, B., Long, J. R., 2010, Carbon dioxide capture: Prospects for new materials, Angew. Chem. Int. Ed., 49, 6058-6082. https://doi.org/10.1002/anie.201000431
  88. Corma, A., Rey, F., Rius, J., Sabater, M. J., Valencia, S., 2004a, Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites, Nature, 431, 287-290. https://doi.org/10.1038/nature02909
  89. Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., Schulz, P., 1995, Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template, Micropor. Mater., 4, 231-238. https://doi.org/10.1016/0927-6513(95)00009-X
  90. Chokkalingam, A., Kawagoe, H., Watanabe, S., Moriyama, Y., Komura, K., Kubota, Y., Kim, J. H., Seo, G., Vinu, A., Sugi, Y., 2013, Isopropylation of biphenyl over ZSM-12 zeolites, J. Mol. Catal. A, 367, 23-30. https://doi.org/10.1016/j.molcata.2012.10.018
  91. Corma, A., Novarro, M, T., Perez-Parlento, J., 1994, Synthesis of an ultralarge pore titanium silicalite isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, J. Chem. Soc., Chem. Commun., 147-148.
  92. Corma, A., Diaz-Cabanas, M. J., Rey, F., Nicolopoulus, S., Boulahya, K., 2004b, ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14-and 12-ring channels, and its catalytic implications, Chem. Commun., 1356-1357.
  93. Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J., Yaghi, O. M., 2005, Porous, crystalline, covalent organic frameworks, Science, 310, 1166-1170. https://doi.org/10.1126/science.1120411
  94. Cavenati, S., Grande, C. A., Rodrigues, A. E., 2004, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data, 49, 1095-1101. https://doi.org/10.1021/je0498917
  95. Cronstedt, A. F., 1756, Ron och beskriting om en obekant barg ant, som kallas zeolites, Kongl Vetenskaps Akademiens Handlingar Stockholm, 17, 120-130 (in Swedish).
  96. Barthomeuf, D., 2003, Framework induced basicity in zeolites, Micropor. Mesopor. Mater., 66, 1-14. https://doi.org/10.1016/j.micromeso.2003.08.006
  97. Akten, E. D., Siriwardane, R. V., Sholl, D. S., 2003, Monte carlo simulation of single-and binarycomponent adsorption of $CO_2$, $N_2$, and $H_2$ in zeolite Na-4A, Energy Fuels, 17, 977-983. https://doi.org/10.1021/ef0300038
  98. Argauer, R. J., Landolt, G. R., 1972, Crystalline zeolite ZSM-5 and method of preparing the same, U.S. Patent 3,702,886A.
  99. Barrer, R. M., 1948, Synthesis and reactions of mordenite, J. Chem. Soc., 2158-2163. https://doi.org/10.1039/jr9480002158
  100. Barrett, P. A., Diaz-Cabanas, M. J., Camblor, M. A., 1999, Crystal structure of zeolite MCM-35 (MTF), Chem. Mater., 11, 2919-2927. https://doi.org/10.1021/cm9910660
  101. Blackwell, C. S., Broach, R. W., Gatter, M. G., Holmgren, J. S., Jan, D. Y., Lewis, G. J., Mezza, B. J., Messa, T. M., Miller, M. A., Moscoso, J. G., Patton, R. L., Rohde, L. M., Schoonover, M. W., Sinkler, W., Wilson, B. A., Wilson, S. T., 2003, Open-framework materials synthesized in the $TMA^+/TEA^+$ mixedtemplate system: The new low Si/Al ratio zeolites UZM-4 and UZM-5, Angew. Chem. Int. Ed., 42, 1737-1740. https://doi.org/10.1002/anie.200250076
  102. Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B., Thomas, T. L., 1956, Crystalline zeolites. I. The properties of a new synthetic zeolite, Type A, J. Am. Chem. Soc., 78, 5963-5971. https://doi.org/10.1021/ja01604a001
  103. Ahn, H. W., Lee, C. H., 2004, Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds, Chem. Eng. Sci., 59, 2727-2743. https://doi.org/10.1016/j.ces.2004.04.011
  104. Brunauer, S., Deming, L. S., Deming, W. E., Teller, E., 1940, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 62, 1723-1732. https://doi.org/10.1021/ja01864a025