Zeolites: Their Features as Pressure Swing Adsorbents and CO2 Adsorption Capacity

제올라이트: 압력순환형 흡착제로서의 특성과 CO2 흡착성능

  • Kim, Moon-Hyeon (Department of Environmental Engineering, Daegu University) ;
  • Cho, Il-Hum (Department of Environmental Engineering, Daegu University) ;
  • Choi, Sang-Ok (Experiment & Research Team, Samsung-BP Chemicals Co. Ltd.) ;
  • Choo, Soo-Tae (Experiment & Research Team, Samsung-BP Chemicals Co. Ltd.)
  • 김문현 (대구대학교 환경공학과) ;
  • 조일흠 (대구대학교 환경공학과) ;
  • 최상옥 (삼성비피화학(주) 시험연구팀) ;
  • 추수태 (삼성비피화학(주) 시험연구팀)
  • Received : 2014.01.02
  • Accepted : 2014.04.17
  • Published : 2014.05.30


Industrial gas drying, dilute gas mixtures purification, air fractionation, hydrogen production from steam reformers and petroleum refinery off-gases, etc are conducted by using adsorptive separation technology. The pressure swing adsorption (PSA) has certain advantages over the other methods, such as absorption and membrane, that are a low energy requirement and cost-effectiveness. A key component of PSA systems is adsorbents that should be highly selective to a gas being separated from its mixture streams and have isotherms suitable for the operation principle. The six standard types of isotherms have been examined in this review, and among them the best behavior in the adsorption of $CO_2$ as a function of pressure was proposed in aspects of maximizing a working capacity upon excursion between adsorption and desorption cycles. Zeolites and molecular sieves are historically typical adsorbents for such PSA applications in gas and related industries, and their physicochemical features, e.g., framework, channel structure, pore size, Si-to-Al ratio (SAR), and specific surface area, are strongly associated with the extent of $CO_2$ adsorption at given conditions and those points have been extensively described with literature data. A great body of data of $CO_2$ adsorption on the nanoporous zeolitic materials have been collected according to pressure ranges adsorbed, and these isotherms have been discussed to get an insight into a better $CO_2$ adsorbent for PSA processes.


  1. Ahn, H. W., Lee, C. H., 2004, Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds, Chem. Eng. Sci., 59, 2727-2743.
  2. Akten, E. D., Siriwardane, R. V., Sholl, D. S., 2003, Monte carlo simulation of single-and binarycomponent adsorption of $CO_2$, $N_2$, and $H_2$ in zeolite Na-4A, Energy Fuels, 17, 977-983.
  3. Argauer, R. J., Landolt, G. R., 1972, Crystalline zeolite ZSM-5 and method of preparing the same, U.S. Patent 3,702,886A.
  4. Barrer, R. M., 1948, Synthesis and reactions of mordenite, J. Chem. Soc., 2158-2163.
  5. Barthomeuf, D., 2003, Framework induced basicity in zeolites, Micropor. Mesopor. Mater., 66, 1-14.
  6. Barrett, P. A., Diaz-Cabanas, M. J., Camblor, M. A., 1999, Crystal structure of zeolite MCM-35 (MTF), Chem. Mater., 11, 2919-2927.
  7. Blackwell, C. S., Broach, R. W., Gatter, M. G., Holmgren, J. S., Jan, D. Y., Lewis, G. J., Mezza, B. J., Messa, T. M., Miller, M. A., Moscoso, J. G., Patton, R. L., Rohde, L. M., Schoonover, M. W., Sinkler, W., Wilson, B. A., Wilson, S. T., 2003, Open-framework materials synthesized in the $TMA^+/TEA^+$ mixedtemplate system: The new low Si/Al ratio zeolites UZM-4 and UZM-5, Angew. Chem. Int. Ed., 42, 1737-1740.
  8. Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B., Thomas, T. L., 1956, Crystalline zeolites. I. The properties of a new synthetic zeolite, Type A, J. Am. Chem. Soc., 78, 5963-5971.
  9. Brunauer, S., Deming, L. S., Deming, W. E., Teller, E., 1940, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 62, 1723-1732.
  10. Cavenati, S., Grande, C. A., Rodrigues, A. E., 2004, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data, 49, 1095-1101.
  11. Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., Schulz, P., 1995, Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template, Micropor. Mater., 4, 231-238.
  12. Chokkalingam, A., Kawagoe, H., Watanabe, S., Moriyama, Y., Komura, K., Kubota, Y., Kim, J. H., Seo, G., Vinu, A., Sugi, Y., 2013, Isopropylation of biphenyl over ZSM-12 zeolites, J. Mol. Catal. A, 367, 23-30.
  13. Corma, A., Novarro, M, T., Perez-Parlento, J., 1994, Synthesis of an ultralarge pore titanium silicalite isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, J. Chem. Soc., Chem. Commun., 147-148.
  14. Corma, A., Rey, F., Rius, J., Sabater, M. J., Valencia, S., 2004a, Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites, Nature, 431, 287-290.
  15. Corma, A., Diaz-Cabanas, M. J., Rey, F., Nicolopoulus, S., Boulahya, K., 2004b, ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14-and 12-ring channels, and its catalytic implications, Chem. Commun., 1356-1357.
  16. Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J., Yaghi, O. M., 2005, Porous, crystalline, covalent organic frameworks, Science, 310, 1166-1170.
  17. Cronstedt, A. F., 1756, Ron och beskriting om en obekant barg ant, som kallas zeolites, Kongl Vetenskaps Akademiens Handlingar Stockholm, 17, 120-130 (in Swedish).
  18. D'Alessandro, D. M., Smit, B., Long, J. R., 2010, Carbon dioxide capture: Prospects for new materials, Angew. Chem. Int. Ed., 49, 6058-6082.
  19. de St Claire-Deville, H., 1862, Reproduction de la levyne, Comptes rendus hebdomadaires des seances de l'Academie des sciences, 54, 324-327 (in French).
  20. Delgado, J. A., Uguina, M. A., Gomez, J. M., Ortega, L., 2006, Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na-and H-mordenite at high pressures, Sep. Purif. Technol., 48, 223-228.
  21. Densakulprasert, N., Wannatong, L., Chotpattananont, D., Hiamtup, P., Sirivat, A., Schwank, J., 2005, Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO, Mater. Sci. Eng. B, 117, 276-282.
  22. Diaz, E., Munoz, E., Vega, A., Ordonez, S., 2008, Enhancement of the $CO_2$ retention capacity of X zeolites by Na-and Cs-treatments, Chemosphere, 70, 1375-1382.
  23. Dunne, S. R., 2010, Industrial gas phase adsorptive separations, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 273-305.
  24. Dunne, J. A., Mariwala, R., Rao, M., Sircar, S., Gorte, R. J., Myers, A. L., 1996a, Calorimetric heats of adsorption and adsorption isotherms. 1. $O_2$, $N_2$, Ar, $CO_2$, $CH_4$, $C_2H_6$, and $SF_6$ on silicalite, Langmuir, 12, 5888-5895.
  25. Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., Myers, A. L., 1996b, Calorimetric heats of adsorption and adsorption isotherms. 2. $O_2$, $N_2$, Ar, $CO_2$, $CH_4$, $C_2H_6$, and $SF_6$ on NaX, H-ZSM-5, and Na-ZSM-5 zeolites, Langmuir, 12, 5896-5904.
  26. El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., Cote, A. P., Taylor, R. E., O'Keeffe, M., Yaghi, O. M., 2007, Designed synthesis of 3D covalent organic frameworks, Science, 316, 268-272.
  27. Flanigen, E. M., Broach, R. W., Wilson, S. T., 2010, Introduction, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1-26 and therein references.
  28. Goj, A., Sholl, D. S., Akten, E. D., Kohen, D., 2002, Atomistic simulations of $CO_2$ and $N_2$ adsorption in silica zeolites: The impact of pore size and shape, J. Phys. Chem. B, 106, 8367-8375.
  29. Gregg, S. J., Sing, K. S. W., 1982, Adsorption, surface area and porosity, 2nd ed., Academic Press, London, 1-303.
  30. Han, B., Lee, S. H., Shin, C. H., Cox, P. A., Hong, S. B., 2005, Zeolite synthesis using flexible diquaternary alkylammoniumions $(C_nH_{2n+1})_2HN^+(CH_2)_5N^+H(C_nH_2_{n+1})_2$ with n=1-5 as structure-directing agents, Chem. Mater., 17, 477-486.
  31. Hong, S. B., 2008, Use of flexible diquaternary structure-directing agents in zeolite synthesis: Discovery of zeolites TNU-9 and TNU-10 and their catalytic properties, Catal. Surv. Asia, 12, 131-144.
  32. Hudson, M. R., Queen, W. L., Mason, J. A., Fickel, D. W., Lobo, R. F., Brown, C. M., 2012, Unconventional, highly selective $CO_2$ adsorption in zeolite SSZ-13, J. Am. Chem. Soc., 134, 1970-1973.
  33. Inui, T., Kang, M., 1997, Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion, Appl. Catal. A, 164, 211-223.
  34. IZA, 2013,
  35. Juntgen, H., 1977, New applications for carbonaceous adsorbents, Carbon, 15, 273-283.
  36. Kim, T. J., Ahn, W. S., Hong, S. B., 1996, Synthesis of zeolite ferrierite in the absence of inorganic cations, Micropor. Mater., 7, 35-40.
  37. Kim, M. H.,, Choi, S. O., Choo, S. T., 2013, Capability of $CO_2$ on metal-organic frameworks-based porous adsorbents and their challenges to pressure swing adsorption applications, Clean Technol., 19, in press.
  38. Kim, S. H., Park, M. B., Min, H. K., Hong. S. B., 2009, Zeolite synthesis in the tetraethylammonium-tetramethylammonium mixed-organic additive system, Micropor. Mesopor. Mater., 123, 160-168.
  39. Krishna, R., van Baten, J. M., 2012, A comparison of the $CO_2$ capture characteristics of zeolites and metal-organic frameworks, Sep. Purif. Technol., 87, 120-126.
  40. Kulprathipanja, S., James, R. B., 2010, Overview in zeolites adsorptive separation, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 173-202.
  41. Kuznicki, S. M., 1989, Large-pored crystalline titanium molecular sieve zeolites, U.S. Patent 4,853,202.
  42. Kuznicki, S. M., Trush, K. A., Allen, F. M., Levine, S. M., Hamil, M. M., Hayhurst, D. T., Mansom, M., 1992, Synthesis and adsorptive properties of titanium silicate molecular sieves, in: Ocelli, M. L. and Robson, H. E. (eds.), Synthesis of Microporous Materials, Molecular Sieves, Vol. 1, Van Nostrand Reinhold, New York, 427-453.
  43. Lee, S. H., Lee, D. K., Shin, C. H., Paik, W. C., Lee, W. M., Hong, S. B., 2000, Synthesis of zeolite ZSM-57 and its catalytic evaluation for the 1-butene skeletal isomerization and n-octane cracking, J. Catal., 196, 158-166.
  44. Lee, J. K., Kim, Y. J., Lee, H. J., Kim, S. H., Cho, S. J., Nam, I. S., Hong S. B., 2011, Iron-substituted TNU-9, TNU-10, and IM-5 zeolites and their steam-activated analogs as catalysts for direct $N_2O$ decomposition, J. Catal., 284, 23-33.
  45. Lee, J. H., Park, M. B., Lee, J. K., Min, H. K., Song, M. K., Hong, S. B., 2010, Synthesis and characterization of ERI-type UZM-12 zeolites and their methanolto-olefin performance, J. Am. Chem. Soc., 132, 12971-12982.
  46. Lee, S. H., Shin, C. H., Choi, G. J., Park, T. J., Nam, I. S., Han, B., Hong, S. B., 2003, Zeolite synthesis in the presence of flexible diquaternary alkylammonium ions $(C_2H_5)_3N^+(CH_2)_nN^+(C_2H_5)_3$ with n=3-10 as structure-directing agents, Micropor. Mesopor. Mater., 60, 237-249.
  47. Leonard, R. J., 1927, The hydrothermal alteration of certain silicate minerals, Econ. Geol., 22, 18-43.
  48. Lewis, G. J., Miller, M. A., Moscoso, J. G., Wilson, B. A., Knight, L. M., Wilson, S. T., 2004a, Experimental charge density matching approach to zeolite synthesis, Stud. Surf. Sci. Catal., 154A, 364-372.
  49. Lewis, G. J., Jan, D. Y., Mezza, B. J., Moscoso, J. G., Miller, M. A., Wilson, B. A., Wilson, S. T., 2004b, UZM-4: A stable Si-rich form of the BPH framework type, Stud. Surf. Sci. Catal., 154A, 118-125.
  50. Li, S., Falconer, J. L., Noble, R. D., 2004, SAPO-34 membranes for $CO_2$/$CH_4$ separation, J. Membr. Sci., 241, 121-135.
  51. Li, J. R., Kuppler, R. J., Zhou, H. C., 2009, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477-1504.
  52. Li, Y., Yi, H., Tang, X., Li, F., Yuan, Q., 2013, Adsorption separation of $CO_2$/$CH_4$ gas mixture on the commercial zeolites at atmosphere pressure, Chem. Eng. J., 229, 50-56.
  53. Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R., Liu, J., 2012, Progress in adsorption-based $CO_2$ capture by metal-organic frameworks, Chem. Soc. Rev., 41, 2308-2322.
  54. Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., Flanigen, E. M., 1984, Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 106, 6092-6093.
  55. McBain, J. W., 1932, The Sorption of Gases and Vapors by Solids, G. Routledge & Sons, London, 167-176.
  56. McEwen, J., Hayman, J. D., Yazaydin, A. O., 2013, A comparative study of $CO_2$, $CH_4$ and $N_2$ adsorption in ZIF-8, zeolite-13X and BPL activated carbon, Chem. Phys., 412, 72-76.
  57. Mertens, M., Stromaier, K. G., 2004, Process for manufacture of molecular sieves, U.S. Patent 6,773,688.
  58. Miller, M. A., Lewis, G. J., Moscoso. J. G., Koster, S., Modica, F., Gatter, M. G., Nemeth, L. T., 2007, Synthesis and catalytic activity of UZM-12, Stud. Surf. Sci. Catal., 170, 487-492.
  59. Millward, A. R., Yaghi, O. M., 2005, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127, 17998-17999.
  60. Milton, R. M., 1989, Molecular sieve science and technology: a historical perspective, in: Occelli, M. L., Robson, H. E. (eds.), Zeolite Synthesis, ACS Symposium Series 398, American Chemical Society, Washington D.C., 1-10.
  61. Miyamoto, M., Fujioka, Y., Yogo, K., 2012, Pure silica CHA type zeolite for $CO_2$ separation using pressure swing adsorption at high pressure, J. Mater. Chem., 22, 20186-20189.
  62. Muller, M., Harvey, G., Prins, R., 2000, Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with $SiCl_4$ by $^1H$, $^{29}Si$ and $^{27}Al$ MAS NMR, Micropor. Mesopor. Mater., 34, 135-147.
  63. Palomino, M., Corma, A., Jorda, J. L., Rey, F., Valencia, S., 2012, Zeolite rho: A highly selective adsorbent for $CO_2$/$CH_4$ separation induced by a structural phase modification, Chem. Commun., 48, 215-217.
  64. Park, J. W., Lee, J. Y., Kim, K. S., Hong, S. B., Seo, G., 2008, Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions, Appl. Catal. A, 339, 36-44.
  65. Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M., Yaghi, O. M., 2006, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186-10191.
  66. Pauling, L., 1930, The structure of some sodium and calcium aluminosilicates, PNAS, 16, 453-459.
  67. Pawlesa, J., Zukal, A., Cejka, J., 2007, Synthesis and adsorption investigations of zeolites MCM-22 and MCM-49 modified by alkali metal cations, Adsorption, 13, 257-265.
  68. Petrovic, I., Navrotsky, A., 1997, Thermochemistry of Na-faujasites with varying Si/Al ratios, Micropor. Mater., 9, 1-12.
  69. Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M., Yaghi, O. M., 2010, Synthesis, structure and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res., 43, 58-67.
  70. Palomino, M., Corma, A., Jorda, J. L., Rey, F., Valencia, S., 2012, Zeolite Rho: A highly selective adsorbent for $CO_2$/$CH_4$ separation induced by a structural phase modification, Chem. Commun., 48, 215-217.
  71. Palomino, M., Corma, A., Rey, F., Valencia, S., 2010, New insights on $CO_2$-methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs, Langmuir, 26, 1910-1917.
  72. Pamba, M., Maurin, G., Devautour, S., Vanderschueren, J., Giuntini, J. C., Renzo, F. D., Hamidi, F., 2000, Influence of framework Si/Al ratio on the $Na^+$/mordenite interaction energy, Phys. Chem. Chem. Phys., 2, 2027-2031
  73. Plevert, J., Yamamoto, K., Chiari, G., Tatsumi, T., 1999, UTM-1: An eight-membered ring zeolite with the basic building chains of the MFI topology, J. Phys. Chem. B, 8647-8649.
  74. Portilla, M. T., Llopis, F. J., Martinez, C., Valencia, S., Corma, A., 2011, Structure-reactivity relationship for aromatics transalkylation and isomerization process with TNU-9, MCM-22 and ZSM-5 zeolites, and their industrial implications, Appl. Catal. A, 393, 257-268.
  75. Prakash, A. M., Hartmann, M. H., Kevan, L., 1998, SAPO-35 molecular sieve: Synthesis, characterization and adsorbate interactions of Cu(II) in CuH-SAPO-35, Chem. Mater., 10, 932-941.
  76. Rachwalik, R., Olejniczak, Z., Sulikowski, B., 2005, Dealumination of ferrierite type zeolite: Physicochemical and catalytic properties, Catal. Today, 101, 147-154.
  77. Reed, T. B., Breck, D. W., 1956, Crystalline zeolites. II. Crystal structure of synthetic zeolite, Type A, J. Am. Chem. Soc., 78, 5972-5977.
  78. Robson, H. E., Shoemaker, D. P., Ogilvie, R. A., Manor, P. C., 1973, Synthesis and crystal structure of zeolite Rho-A new zeolite related to Linde Type A, Adv. Chem., 121, 106-115.
  79. Schimmel, H. G., Kearley, G. J., Nijkamp, M. G., Visserl, C. T., de Jong, K. P., Mulder, F. M., 2003, Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals, Chem. Eur. J., 9, 4764-4770.
  80. Schlenker, J. L., Higgins, J. B., Valyocsik, E. W., 1990, The framework topology of ZSM-57: A new synthetic zeolite, Zeolites, 10, 293-296.
  81. Sing, K. S. W., 1982, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 54, 2201-2218.
  82. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T., 1985, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57, 603-619.
  83. Sircar, S., 2006, Basic research needs for design of adsorptive gas separation processes, Ind. Eng. Chem. Res., 45, 5435-5448.
  84. Siriwardane, R. V., Shen, M. S., Fisher, E. P., 2003, Adsorption of $CO_2$, $N_2$, and $O_2$ on natural zeolites, Energy Fuels, 17, 571-576.
  85. Siriwardane, R. V., Shen, M. S., Fisher, E. P., Poston, J. A., 2001, Adsorption of $CO_2$ on molecular sieves and activated carbon, Energy Fuels, 15, 279-284.
  86. Stewart, A., Johnson, D. W., Shannon, M. D., 1988, Synthesis and characterisation of crystalline aluminosilicate sigma-1, Stud. Surf. Sci. Catal., 37, 57-64.
  87. Suzuki, M., 1994, Activated carbon fiber: Fundamentals and applications, Carbon, 32, 577-586.
  88. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., Mirodatos, C., 2009, Natural gas treating by selective adsorption: material science and chemical engineering interplay, Chem. Eng. J., 155, 553-566.
  89. Taramasso, M., Perego, G., Notari, B., 1983, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, U.S. Patent 4,410,501A.
  90. Taylor, W. H., 1930, The crystal structure of analcite $(NaAlSi_2O_6{\cdot}H_2O)$, Z. Kristallogr., 74, 1-19 (in German).
  91. Thomas, B., Ramu, V. G., Gopinath, S., George, J., Kurian, M., Laurent, G., Drisko, G. L., Sugunan, S., 2011, Catalytic acetalization of carbonyl compounds over cation ($Ce^{3+}$, $Fe^{3+}$ and $Al^{3+}$) exchanged montmorillonites and $Ce^{3+}$-exchanged Y zeolites, Appl. Clay Sci., 53, 227-235.
  92. UNEP (the United Nations Environment Programme), 2013, The emissions gap report 2013: A UNEP synthesis report, Nairobi, Kenya.
  93. Walton, K. S., Abney, M. B., LeVan, M. D., 2006, $CO_2$ Adsorption in Y and X zeolites modified by alkali metal cation exchange, Micropor. Mesopor. Mater., 91, 78-84.
  94. Wang, Q., Luo, J., Zhong, Z., Borgna, A., 2011, $CO_2$ capture by solid adsorbents and their applications: Current status and new trends, Energy Environ. Sci., 4, 42-55.
  95. Wei, X., Smirniotis, P. G., 2006, Development and characterization of mesoporosity in ZSM-12 by desilication, Micropor. Mesopor. Mater., 97, 97-106.
  96. Weigel, O., Steinhoff, E., 1925, Adsorption of organic liquid vapors by chabazite, Z. Kristallogr., 61, 125-154 (in German).
  97. Wilson, S. T., Broach, R. W., Blackwell, C. S., Bateman, C. A., McGuire, N. K., Kirchner, R. M., 1999, Synthesis, characterization and structure of SAPO-56, a member of the ABC double-six-ring family of materials with stacking sequence AABBCCBB, Micropor. Mesopor. Mater., 28, 125-197.
  98. Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., Flanigen, E. M., 1982, Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 104, 1146-1147.
  99. Xu, X., Zhao, X., Sun, L., Liu, X., 2008, Adsorption separation of carbon dioxide, methane, and nitrogen on H${\beta}$ and Na-exchanged ${\beta}$-zeolite, J. Natural Gas Chem., 17, 391-396.
  100. Yaghi, O. M., Li, G., Li, H., 1995, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706.
  101. Yamamoto, K., Plevert, J., Uneme, M., Tatsumi, T., 2002, Synthesis, characterization and catalysis of UTM-1: An MTF-type zeolite composed of the same building unit as MFI-type zeolites, Micropor. Mesopor. Mater., 55, 81-91.
  102. Yang, R. T., 2003, Adsorbents: Fundamental and Applications, John Wiley & Sons, Hoboken, 1-410.
  103. Zones, S. I., 1985, Zeolite SSZ-13 and its method of preparation, U.S. Patent 4,544,538.
  104. Zukal, A., Mayerova, J., Kubu, 2010, Adsorption of carbon dioxide on high-silica zeolites with different framework topology, Top. Catal., 53, 136-1366.