DOI QR코드

DOI QR Code

Static Culture Condition for Production of Bacterial Cellulose, Environment-Friendly Functional Material, by Acetic Acid Bacteria

초산균에 의한 환경친화적 기능성소재인 세균 셀룰로오스 생산을 위한 정치배양조건 최적화

  • Cho, Kwang-Sik (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University) ;
  • Lee, Sang-Mee (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University) ;
  • Jeong, Seong-Yun (Department of Medical Life Science, Catholic University of Daegu) ;
  • Park, Geun-Tae (Research and University-Industry Cooperation, Pusan National University) ;
  • Lee, Hee-Sup (College of Human Ecology, Pusan National University) ;
  • Hwang, Dae-Youn (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University) ;
  • Jung, Young-Jin (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University) ;
  • Son, Hong-Joo (College of Natural Resources & Life Science, Life and Industry Convergence Institute, Pusan National University)
  • 조광식 (부산대학교 생명자원과학대학 및 생명산업융합연구원) ;
  • 이상미 (부산대학교 생명자원과학대학 및 생명산업융합연구원) ;
  • 정성윤 (대구가톨릭대 의생명과학과) ;
  • 박근태 (부산대학교 산학협력단) ;
  • 이희섭 (부산대학교 생활환경대학) ;
  • 황대연 (부산대학교 생명자원과학대학 및 생명산업융합연구원) ;
  • 정영진 (부산대학교 생명자원과학대학 및 생명산업융합연구원) ;
  • 손홍주 (부산대학교 생명자원과학대학 및 생명산업융합연구원)
  • Received : 2014.02.20
  • Accepted : 2014.04.10
  • Published : 2014.05.30

Abstract

Bacterial cellulose (BC) has played important role as new functional material for food industry and industrial products based on its unique properties. The interest in BC from static cultures has increased steadily in recent years because of its potential for use in medicine and cosmetics. In this study, we investigated culture condition for BC production by Acetobacter sp. F15 in static culture. The strain F15, which was isolated from decayed fruit, was selected on the basis of BC thickness. The optimal medium compositions for BC production were glucose 7%, soytone 12%, $K_2HPO_4$ 0.2%, $NaH_2PO_4{\cdot}_2H_2O$ 0.2%, lactic acid 0.05% and ethanol 0.3%, respectively. The strain F15 was able to produce BC at $26^{\circ}C-36^{\circ}C$ with a maximum at $32^{\circ}C$. BC production occurred at pH 4.5-8 with a maximum at pH 6.5. Under these conditions, a maximum BC thickness of 12.15 mm was achieved after 9 days of cultivation; this value was about 2.3-fold higher than the thickness in basic medium. Scanning electron micrographs showed that BC from the optimal medium was more compact than plant cellulose and was reticulated structure consisting of ultrafine cellulose fibrils. BC from the optimal medium was found to be of cellulose type I, the same as typical native cellulose.

Keywords

Acetobacter;Bacterial cellulose;Static culture

Acknowledgement

Supported by : 농림수산식품부

References

  1. Williams, W.S., Cannon, R. E., 1989, Alternative environmental roles for cellulose produced by Acetobacter xylinum, Appl. Environ. Microbiol,. 55, 2448-2452.
  2. Park, S. T., Song, T. S., Kim, Y. M., 1999, Effect of gluconic acid on the production of cellulose in Acetobacter xylinum BRC5. J. Microbiol. Biotechnol., 9, 683-686.
  3. Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., Yoshinaga, F., 1996, A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans, Biosci. Biotech. Biochem., 60, 575-579. https://doi.org/10.1271/bbb.60.575
  4. Naritomi, T., Kouda, T., Yano, H., Yoshinaga, F., 1998, Effect of ethanol on bacterial cellulose production from fructose in continuous culture, J. Ferment. Bioeng., 85, 598-603. https://doi.org/10.1016/S0922-338X(98)80012-3
  5. Oikawa T., Ohtoti, T., Ameyama, M., 1995, Production of cellulose from D-mannitol by Acetobacter xylinum KU-1, Biosci. Biotech. Biochem., 59, 331-332. https://doi.org/10.1271/bbb.59.331
  6. Ramana, K. V., Tomar, A., Singh, L., 2000, Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum, World J. Microbiol. Biotechnol., 16, 245-248. https://doi.org/10.1023/A:1008958014270
  7. Ross, P., Mayer, R., Benziman, M., 1991, Cellulose biosynthesis and function in bacteria, Microbiol. Rev., 55, 35-58.
  8. Son, H. J., Lee, O. M., Kim, Y. G., Park, Y. K., Lee, S. J., 2000, Characteristics of cellulose production by Acetobacter sp. A9 in static culture, Kor. J. Biotechnol. Bioeng., 15, 573-577.
  9. Sutherland, I.W., 1998, Novel and estabilished applications of microbial polysaccharides, Tibtech., 16, 41-46. https://doi.org/10.1016/S0167-7799(97)01139-6
  10. Toda, K., Asakura, T., Fukaya, M., Entani, E., Kawamura, Y., 1997, Cellulose production by acetic acidresistant Acetobacter xylinum, J. Ferment. Bioeng., 84, 228-231. https://doi.org/10.1016/S0922-338X(97)82059-4
  11. Valla, S., Kjosbakken, J., 1982, Cellulose negative mutants of Acetobacter xylinum, J. Gen. Microbiol., 128, 1401-1408.
  12. Dudman, W. F., 1959, Cellulose production by Acetobacter acetigenum in defined medium, J. Gen. Microbiol., 21, 327-337. https://doi.org/10.1099/00221287-21-2-327
  13. Czaja, W. K., Young, D. J., Kawecki, M., Brown, Jr. R. M., 2007, The future prospects of microbial cellulose in biomedical applications, Biomacromol., 8, 1-12. https://doi.org/10.1021/bm060620d
  14. Delmer, D. P., 1987, Cellulose biosynthesis, Ann. Rev. Plant Physiol., 38, 259-290. https://doi.org/10.1146/annurev.pp.38.060187.001355
  15. Delmer, D. P., Amor, Y., 1987, Cellulose biosynthesis, Plant Cell, 7, 987-1000.
  16. Embuscado, M. E., BeMiller, N., Marks, J. S.. 1996, Isolation and partial characterization of cellulose produced by Acetobacter xylinum, Food Hydrocoll., 10, 75-82. https://doi.org/10.1016/S0268-005X(96)80057-9
  17. Fu, L., Zhang, J., Yang, G., 2013, Present status and applications of bacterial cellulose-based materials for skin tissue repair, Carbohydrate Polym., 92, 1432-1442. https://doi.org/10.1016/j.carbpol.2012.10.071
  18. Chawla, P. R., Bajaj, I. B., Survase, S. A., Singhal, R. S.. 2009, Microbial cellulose: fermentative production and applications, Food Technol. Biotechnol., 47, 107-124.
  19. Hestrin, S., Schramm, M., 1954, Synthesis of cellulose by Acetobacter xylinum, Biochem. J., 58, 345-352.
  20. Ishihara, M., Matsunaga, M., Hayashi, N., Ti{ler, V., 2002, Utilization of D-xylose as carbon source for production of bacterial cellulose, Enzyme Microb. Technol., 31, 986-991. https://doi.org/10.1016/S0141-0229(02)00215-6
  21. Jornas, R., Farah, L. F., 1998, Production and application of microbial cellulose, Polym. Degrad. Stab., 59, 101-106. https://doi.org/10.1016/S0141-3910(97)00197-3
  22. Kim, J. D., Jung, H. I., Jeong, J. H., Park, K. H., Jeon, Y. D., Hwang, D. Y., Lee, C. Y., Son, H. J., 2009, Production and structural analysis of cellulose by Acetobacter sp. V6 using static culture, Kor. J. Microbiol., 45, 275-280.
  23. Cannon, R. E., Anderson, S. M., 1991, Biogenesis of bacterial cellulose, Crit. Rev. Microbiol., 17, 435-447. https://doi.org/10.3109/10408419109115207

Cited by

  1. Effect of Acetic Acid Concentration and Mixed Culture of Lactic Acid Bacteria on Producing Bacterial Cellulose Using Gluconacetobacter sp. gel_SEA623-2 vol.50, pp.3, 2014, https://doi.org/10.7845/kjm.2014.4062