Crystallinity of CrOx/TiO2 Catalysts and Their Activity in TCE Oxidation

CrOx/TiO2 촉매의 결정성과 TCE 산화반응 활성

  • Kim, Moon-Hyeon (Department of Environmental Engineering, Daegu University) ;
  • Lee, Hyo-Sang (Department of Environmental Engineering, Daegu University)
  • 김문현 (대구대학교 환경공학과) ;
  • 이효상 (대구대학교 환경공학과)
  • Received : 2013.10.31
  • Accepted : 2014.03.10
  • Published : 2014.05.30


Titania-supported chromium oxides with different loadings have been embarked in catalytic oxidation of trichloroethylene (TCE) to inquire association of the formation of crystalline $Cr_2O_3$ with catalytic performances. A better activity in the oxidative TCE decomposition at chosen temperatures was represented when chromium oxides ($CrO_x$) had been dispersed on pure anatase-type $TiO_2$ (DT51D) rather than on phase-mixed and sulfur-contained ones such as P25 and DT51. The extent of TCE oxidation at temperatures below $350^{\circ}C$ was a strong function of $CrO_x$ content in $CrO_x$/DT51D $TiO_2$, and a noticeable point was that the catalyst has two optimal $CrO_x$ loadings in which the lowest $T_{50}$ and $T_{90}$ values were measured for the TCE oxidation. This behavior in the activity with respect to $CrO_x$ amounts could be associated with the formation of crystalline $Cr_2O_3$ on the support surface, that is less active for the oxidation reaction, and an easier mobility of the surface oxygen existing in noncrystalline $CrO_x$ species with higher oxidation states, such as $Cr_2O_8$ and $CrO_3$.


Trichloroethylene;Catalytic oxidation;Supported chromium oxides;Titania;Crystalline chromium oxides


  1. Agarwal, S. K., Spivey, J. J., Butt, J. B., 1992, Deep oxidation of hydrocarbons, Appl. Catal. A, 81, 239-255.
  2. Bond, G. C., Sadeghi, N., 1975, Catalysed destruction of chlorinated hydrocarbons, J. Appl. Chem. Biotech., 25, 241-248.
  3. Corella, J., Toledo, J. M., Padilla, A., 2000, On the selection of the catalyst among the commercial platinum-based ones for total oxidation of some chlorinated hydrocarbons, Appl. Catal. B, 27, 243-256.
  4. Farrell, J., Luo, J., Blowers, P., Curry, J., 2002, Experimental and molecular mechanics and ab initio investigation of activated adsorption and desorption of trichloroethylene in mineral micropores, Environ. Sci. Technol., 36, 1524-1531.
  5. Hardcastle, F. D., Wachs, I. E., 1988, Raman spectroscopy of chromium oxide supported on $Al_2O_3$, $TiO_2$ and $SiO_2$: A comparative study, J. Mol. Catal., 46, 173-186.
  6. Yim, S. D., Chang, K. H., Koh, D. J., Nam, I. S., Kim, Y. G., 2000b, Catalytic removal of perchloroethylene (PCE) over supported chromium oxide catalysts, Catal. Today, 63, 215-222.
  7. Moretti, E. C., 2001, Practical solutions for reducing volatile organic compounds and hazardous air pollutants, CWRT, AIChE, New York, NY, USA, 1-150.
  8. Scharf, U., Schneider, H., Baiker, A., Wokaun, A., 1994, Chromia supported on titania: III. Structure and spectroscopic properties, J. Catal., 145, 464-478.
  9. Rachapudi, R., Chintawar, P. S., Greene, H. L., 1999, Aging and structure/activity characteristics of Cr-ZSM-5 catalysts during exposure to chlorinated VOCs, J. Catal., 185, 58-72.
  10. Vuurman, M. A., Hardcastle, F. D., Wachs, I. E., 1993, Characterization of $CrO_3/Al_2O_3$ catalysts under ambient conditions: Influence of coverage and calcination temperature, J. Mol. Catal., 84, 193-205.
  11. Weldon, J., Senkan, S. M., 1986, Catalytic combustion of $CH_3Cl$ by $Cr_2O_3$, Combust. Sci. Technol., 47, 229-237.
  12. Yang, W. H., Kim, M. H., 2006, Oxidative decomposition of TCE over $TiO_2$-supported metal oxide catalysts, J. Environ. Sci., 15, 221-227.
  13. Yim, S. D., Nam, I. S., 2004, Characteristics of chromium oxides supported on $TiO_2$ and $Al_2O_3$ for the decomposition of perchloroethylene, J. Catal., 221, 601-611.
  14. Yim, S. D., Koh, D. J., Nam, I. S., Kim, Y. G., 2000a, Effect of the catalyst supports on the removal of perchloroethylene (PCE) over chromium oxide catalysts, Catal. Lett., 64, 201-207.
  15. Kosusko, M., Nunez, C. M., 1990, Destruction of volatile organic compounds using catalytic oxidation, J. Air Waste Manage. Assoc., 40, 254-259.
  16. Kulazynski, M., van Ommen, J. G., Trawczynski, J., Walendiewski, J., 2002, Catalytic combustion of trichloroethylene over $TiO_2$-$SiO_2$ supported catalysts, Appl. Catal., 36, 239-247.
  17. Manning, M. P., 1984, Fluid bed catalytic oxidation: An underdeveloped hazardous waste disposal technology, Hazard. Waste, 1, 41-65.
  18. Mars, P., van Krevelen, D. W., 1954, Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sci., 3, 41-59.
  19. Miranda, B., Diaz, E., Ordonez, S., Vega, A., Diez, F. V., 2007, Oxidation of trichloroethene over metal oxide catalysts: Kinetic studies and correlation with adsorption properties, Chemosphere, 66, 1706-1715.
  20. Hong, C. W., Kim, M. H., Nam, I. S., Kim, Y. G., 1998, Effect of supports and transition metal oxides on the catalytic decomposition of trichloroethylene, Korean Chem. Eng. Res., 36, 206-214.
  21. Hung, S. L., Pfefferle, L. D., 1989, Methyl chloride and methylene chloride incineration in a catalytically stabilized thermal combustor, Environ. Sci. Technol., 23, 1085-1091.
  22. Intriago, L., Diaz, E., Ordonez, S., Vega, A., 2006, Combustion of trichloroethylene and dichloromethane over protonic zeolites: Influence of adsorption properties on the catalytic performance, Micropor. Mesopor. Mater., 91, 161-169.
  23. Ivanova, T., Gesheva, K., Cziraki, A., Szekeres, A., Vlaikova, E., 2008, Structural transformations and their relation to the optoelectronic properties of chromium oxide thin films, J. Phys., 113, 1-5.
  24. Kim, M. H., Choo, K. H., 2005, On-stream activity and surface chemical structure of $CoO_x/TiO_2$ catalysts for continuous wet TCE oxidation, J. Environ. Sci., 14, 221-230.
  25. Kim, M. H., Kim, D. W., 2011, Parametric study on the deactivation of supported $Co_3O_4$ catalysts for low temperature CO oxidation, Chin. J. Catal., 32, 762-770.