DOI QR코드

DOI QR Code

Crystallinity of CrOx/TiO2 Catalysts and Their Activity in TCE Oxidation

CrOx/TiO2 촉매의 결정성과 TCE 산화반응 활성

  • Kim, Moon-Hyeon (Department of Environmental Engineering, Daegu University) ;
  • Lee, Hyo-Sang (Department of Environmental Engineering, Daegu University)
  • 김문현 (대구대학교 환경공학과) ;
  • 이효상 (대구대학교 환경공학과)
  • Received : 2013.10.31
  • Accepted : 2014.03.10
  • Published : 2014.05.30

Abstract

Titania-supported chromium oxides with different loadings have been embarked in catalytic oxidation of trichloroethylene (TCE) to inquire association of the formation of crystalline $Cr_2O_3$ with catalytic performances. A better activity in the oxidative TCE decomposition at chosen temperatures was represented when chromium oxides ($CrO_x$) had been dispersed on pure anatase-type $TiO_2$ (DT51D) rather than on phase-mixed and sulfur-contained ones such as P25 and DT51. The extent of TCE oxidation at temperatures below $350^{\circ}C$ was a strong function of $CrO_x$ content in $CrO_x$/DT51D $TiO_2$, and a noticeable point was that the catalyst has two optimal $CrO_x$ loadings in which the lowest $T_{50}$ and $T_{90}$ values were measured for the TCE oxidation. This behavior in the activity with respect to $CrO_x$ amounts could be associated with the formation of crystalline $Cr_2O_3$ on the support surface, that is less active for the oxidation reaction, and an easier mobility of the surface oxygen existing in noncrystalline $CrO_x$ species with higher oxidation states, such as $Cr_2O_8$ and $CrO_3$.

Keywords

Trichloroethylene;Catalytic oxidation;Supported chromium oxides;Titania;Crystalline chromium oxides

References

  1. Agarwal, S. K., Spivey, J. J., Butt, J. B., 1992, Deep oxidation of hydrocarbons, Appl. Catal. A, 81, 239-255. https://doi.org/10.1016/0926-860X(92)80096-U
  2. Bond, G. C., Sadeghi, N., 1975, Catalysed destruction of chlorinated hydrocarbons, J. Appl. Chem. Biotech., 25, 241-248.
  3. Corella, J., Toledo, J. M., Padilla, A., 2000, On the selection of the catalyst among the commercial platinum-based ones for total oxidation of some chlorinated hydrocarbons, Appl. Catal. B, 27, 243-256. https://doi.org/10.1016/S0926-3373(00)00154-5
  4. Farrell, J., Luo, J., Blowers, P., Curry, J., 2002, Experimental and molecular mechanics and ab initio investigation of activated adsorption and desorption of trichloroethylene in mineral micropores, Environ. Sci. Technol., 36, 1524-1531. https://doi.org/10.1021/es011172e
  5. Hardcastle, F. D., Wachs, I. E., 1988, Raman spectroscopy of chromium oxide supported on $Al_2O_3$, $TiO_2$ and $SiO_2$: A comparative study, J. Mol. Catal., 46, 173-186. https://doi.org/10.1016/0304-5102(88)85092-2
  6. Yim, S. D., Chang, K. H., Koh, D. J., Nam, I. S., Kim, Y. G., 2000b, Catalytic removal of perchloroethylene (PCE) over supported chromium oxide catalysts, Catal. Today, 63, 215-222. https://doi.org/10.1016/S0920-5861(00)00462-4
  7. Moretti, E. C., 2001, Practical solutions for reducing volatile organic compounds and hazardous air pollutants, CWRT, AIChE, New York, NY, USA, 1-150.
  8. Scharf, U., Schneider, H., Baiker, A., Wokaun, A., 1994, Chromia supported on titania: III. Structure and spectroscopic properties, J. Catal., 145, 464-478. https://doi.org/10.1006/jcat.1994.1057
  9. Rachapudi, R., Chintawar, P. S., Greene, H. L., 1999, Aging and structure/activity characteristics of Cr-ZSM-5 catalysts during exposure to chlorinated VOCs, J. Catal., 185, 58-72. https://doi.org/10.1006/jcat.1999.2494
  10. Vuurman, M. A., Hardcastle, F. D., Wachs, I. E., 1993, Characterization of $CrO_3/Al_2O_3$ catalysts under ambient conditions: Influence of coverage and calcination temperature, J. Mol. Catal., 84, 193-205. https://doi.org/10.1016/0304-5102(93)85052-U
  11. Weldon, J., Senkan, S. M., 1986, Catalytic combustion of $CH_3Cl$ by $Cr_2O_3$, Combust. Sci. Technol., 47, 229-237. https://doi.org/10.1080/00102208608923875
  12. Yang, W. H., Kim, M. H., 2006, Oxidative decomposition of TCE over $TiO_2$-supported metal oxide catalysts, J. Environ. Sci., 15, 221-227. https://doi.org/10.5322/JES.2006.15.3.221
  13. Yim, S. D., Nam, I. S., 2004, Characteristics of chromium oxides supported on $TiO_2$ and $Al_2O_3$ for the decomposition of perchloroethylene, J. Catal., 221, 601-611. https://doi.org/10.1016/j.jcat.2003.09.026
  14. Yim, S. D., Koh, D. J., Nam, I. S., Kim, Y. G., 2000a, Effect of the catalyst supports on the removal of perchloroethylene (PCE) over chromium oxide catalysts, Catal. Lett., 64, 201-207. https://doi.org/10.1023/A:1019076112539
  15. Kosusko, M., Nunez, C. M., 1990, Destruction of volatile organic compounds using catalytic oxidation, J. Air Waste Manage. Assoc., 40, 254-259.
  16. Kulazynski, M., van Ommen, J. G., Trawczynski, J., Walendiewski, J., 2002, Catalytic combustion of trichloroethylene over $TiO_2$-$SiO_2$ supported catalysts, Appl. Catal., 36, 239-247. https://doi.org/10.1016/S0926-3373(01)00313-7
  17. Manning, M. P., 1984, Fluid bed catalytic oxidation: An underdeveloped hazardous waste disposal technology, Hazard. Waste, 1, 41-65. https://doi.org/10.1089/hzw.1984.1.41
  18. Mars, P., van Krevelen, D. W., 1954, Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sci., 3, 41-59. https://doi.org/10.1016/S0009-2509(54)80005-4
  19. Miranda, B., Diaz, E., Ordonez, S., Vega, A., Diez, F. V., 2007, Oxidation of trichloroethene over metal oxide catalysts: Kinetic studies and correlation with adsorption properties, Chemosphere, 66, 1706-1715. https://doi.org/10.1016/j.chemosphere.2006.07.016
  20. Hong, C. W., Kim, M. H., Nam, I. S., Kim, Y. G., 1998, Effect of supports and transition metal oxides on the catalytic decomposition of trichloroethylene, Korean Chem. Eng. Res., 36, 206-214.
  21. Hung, S. L., Pfefferle, L. D., 1989, Methyl chloride and methylene chloride incineration in a catalytically stabilized thermal combustor, Environ. Sci. Technol., 23, 1085-1091. https://doi.org/10.1021/es00067a003
  22. Intriago, L., Diaz, E., Ordonez, S., Vega, A., 2006, Combustion of trichloroethylene and dichloromethane over protonic zeolites: Influence of adsorption properties on the catalytic performance, Micropor. Mesopor. Mater., 91, 161-169. https://doi.org/10.1016/j.micromeso.2005.11.043
  23. Ivanova, T., Gesheva, K., Cziraki, A., Szekeres, A., Vlaikova, E., 2008, Structural transformations and their relation to the optoelectronic properties of chromium oxide thin films, J. Phys., 113, 1-5.
  24. Kim, M. H., Choo, K. H., 2005, On-stream activity and surface chemical structure of $CoO_x/TiO_2$ catalysts for continuous wet TCE oxidation, J. Environ. Sci., 14, 221-230. https://doi.org/10.5322/JES.2005.14.2.221
  25. Kim, M. H., Kim, D. W., 2011, Parametric study on the deactivation of supported $Co_3O_4$ catalysts for low temperature CO oxidation, Chin. J. Catal., 32, 762-770. https://doi.org/10.1016/S1872-2067(10)60233-1