DOI QR코드

DOI QR Code

Fluorescent Probes for Analysis and Imaging of Monoamine Oxidase Activity

  • Kim, Dokyoung ;
  • Jun, Yong Woong ;
  • Ahn, Kyo Han
  • Received : 2014.03.11
  • Accepted : 2014.04.20
  • Published : 2014.05.20

Abstract

Monoamine oxidases catalyze the oxidative deamination of dietary amines and amine neurotransmitters, and assist in maintaining the homeostasis of the amine neurotransmitters in the brain. Dysfunctions of these enzymes can cause neurological and behavioral disorders including Parkinson's and Alzheimer's diseases. To understand their physiological roles, efficient assay methods for monoamine oxidases are essential. Reviewed in this Perspective are the recent progress in the development of fluorescent probes for monoamine oxidases and their applications to enzyme assays in cells and tissues. It is evident that still there is strong need for a fluorescent probe with desirable substrate selectivity and photophysical properties to challenge the much unsolved issues associated with the enzymes and the diseases.

Keywords

Monoamine oxidase (MAO);Fluorescent probes;Fluorescence imaging;Neurotransmitters;Neuronal disease

References

  1. Shih, J. C.; Chen, K.; Ridd, M. J. Annu. Rev. Neurosci. 1999, 22, 197-217. https://doi.org/10.1146/annurev.neuro.22.1.197
  2. Youdim, M. B. H.; Edmondson, D.; Tipton, K. F. Nat. Rev. Neurosci. 2006, 7, 295-309. https://doi.org/10.1038/nrn1883
  3. Edmondson, D. E.; Binda, C.; Wang, J.; Upadhyay, A. K.; Mattevi, A. Biochemistry 2009, 48, 4220-4230. https://doi.org/10.1021/bi900413g
  4. Binda, C.; Newton-Vinson, P.; Hubalek, F.; Edmondson, D. E.; Mattevi, A. Nat. Struct. Biol. 2002, 9, 22-26. https://doi.org/10.1038/nsb732
  5. Fowler, J. S.; MacGregor, R. R.; Wolf, A. P.; Arnett, C. D.; Dewey, S. L.; Schlyer, D.; Christman, D.; Logan, J.; Smith, M.; Sachs, H.; Aquilonius, S. M.; Bjurling, P.; Halldin, C.; Hartvig, P.; Leenders, K. L.; Lundqvist, H.; Oreland, L.; Stalnacke, C.-G.; Langstrom, B. Science 1987, 235, 481-485. https://doi.org/10.1126/science.3099392
  6. Westlund, K. N.; Denney, R. M.; Kochersperger, L. M.; Rose, R. M.; Abell, C. W. Science 1985, 230, 181-183. https://doi.org/10.1126/science.3875898
  7. Colibus, L. D.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D. E.; Mattevi, A. Proc. Natl. Acad. Sci. USA 2005, 102, 12684-12689. https://doi.org/10.1073/pnas.0505975102
  8. Binda, C.; Hubalek, F.; Li, M.; Herzig, Y.; Sterling, J.; Edmondson, D. E.; Mattevi, A. J. Med. Chem. 2004, 47, 1767-1774. https://doi.org/10.1021/jm031087c
  9. Ma, J.; Yoshimura, M.; Yamashita, E.; Nakagawa, A.; Ito, A.; Tsukihara, T. J. Mol. Biol. 2004, 338, 103-114. https://doi.org/10.1016/j.jmb.2004.02.032
  10. Youdim, M. B. H.; Bakhle, Y. S. Br. J. Pham. 2006, 147, S287-S296.
  11. Riederer, P.; Lachenmayer, L.; Laux, G. Curr. Med. Chem. 2004, 11, 2033-2043. https://doi.org/10.2174/0929867043364775
  12. Riederer, P.; Laux. Experimental Neurobiology 2011, 20, 1-17. https://doi.org/10.5607/en.2011.20.1.1
  13. Thomas, T. Neurobiology of Aging 2000, 21, 343-348. https://doi.org/10.1016/S0197-4580(00)00100-7
  14. Fowler, C. J.; Tipton, K. F. Biochem. Pharmacol. 1981, 30, 3329-3332. https://doi.org/10.1016/0006-2952(81)90607-9
  15. Yan, Z.; Caldwell, G. W.; Zhao, B.; Reitz, A. B. Rapid Commun. Mass Spectrom. 2004, 18, 834-840. https://doi.org/10.1002/rcm.1415
  16. Guang, H.-M; Du, G.-H. Acta Pharm. Sinica 2006, 27, 760-766. https://doi.org/10.1111/j.1745-7254.2006.00336.x
  17. Zhou, J. J. P.; Zhong, B.; Silverman, R. B. Anal. Biochem. 1996, 234, 9-12. https://doi.org/10.1006/abio.1996.0041
  18. Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. Chem. Soc. Rev. 2011, 40, 3483-3495. https://doi.org/10.1039/c0cs00224k
  19. Kochersperger, L. M.; Waguespack, A.; Patterson, J. C.; Hsieh, C. C. W.; Weyler, W.; Salach, J. I.; Denney, R. M. J. Neuroscience 1985, 5, 2874-2881.
  20. Fowler, J. S.; Logan, J.; Volkow, N. D.; Wang, G.-J. Mol. Imaging Biol. 2005, 7, 377-387. https://doi.org/10.1007/s11307-005-0016-1
  21. Thorpe, L. W.; Westlund, K. N.; Kochersperger, L. M.; Abell, C. W.; Denney, R. M. J. Histochemistry and Cytochemistry 1987, 35, 23-32. https://doi.org/10.1177/35.1.3025289
  22. Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y. Chem. Rev. 2010, 110, 2620-2640. https://doi.org/10.1021/cr900263j
  23. Chen, G.; Yee, D. J.; Gubernator, N. G.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4544-4545. https://doi.org/10.1021/ja0428457
  24. Van, S.-P.; Hammond, G. S. J. Am. Chem. Soc. 1978, 100, 3895-3902. https://doi.org/10.1021/ja00480a039
  25. Zhou, W.; Valley, M. P.; Shultz, J.; Hawkins, E. M. Bernad, L.; Good, T.; Good, D.; Riss, T. L.; Klaubert, D. H.; Wood, K. V. J. Am. Chem. Soc. 2006, 128, 3122-3123. https://doi.org/10.1021/ja058519o
  26. Li, J.; Chen, L.; Du, L.; Li, M. Chem. Soc. Rev. 2013, 42, 662-676. https://doi.org/10.1039/c2cs35249d
  27. Albers, A. E.; Rawls, K. A.; Chang, C. J. Chem. Commun. 2007, 4647-4649.
  28. Du, J.; Hu, M.; Fan, J.; Peng, X. Chem. Soc. Rev. 2012, 41, 4511-4535. https://doi.org/10.1039/c2cs00004k
  29. Jun, M. E.; Roy, B.; Ahn, K. H. Chem. Commun. 2011, 7583-7601.
  30. Lu, Y. Y.; Wang, Y. G.; Dai, B.; Dai, Y. Q.; Wang, Z.; Fu, Z. W.; Zhu, Q. Chinese Chem. Lett. 2008, 19, 947-950. https://doi.org/10.1016/j.cclet.2008.05.032
  31. Li, X.; Zhang, H.; Xie, Y.; Hu, Y.; Sun, H., Zhu, Q. Org. Biomol. Chem. 2014, 12, 2033-2036. https://doi.org/10.1039/c3ob42326c
  32. Helmchen, F.; Denk, W. Nat. Methods 2005, 2, 932-940. https://doi.org/10.1038/nmeth818
  33. Aw, J.; Shao, Q.; Yang, Y.; Jiang, T.; Ang, C.; Xing, B. Chem. Asian J. 2010, 5, 1317-1321.
  34. Kim, D.; Sambasivan, S.; Nam, H.; Kim, K. H.; Kim, J. Y.; Joo, T.; Lee, K.-H.; Kim, K.-T.; Ahn, K. H. Chem. Commun. 2012, 6833-6835.
  35. Kim, I.; Kim, D.; Sambasivan, S.; Ahn, K. H. Asian J. Org. Chem. 2012, 1, 60-64. https://doi.org/10.1002/ajoc.201200034
  36. Zipfel, W. R.; Williams, R. M.; Webb, W. W. Nat. Biotech. 2003, 21, 1369-1377. https://doi.org/10.1038/nbt899
  37. Kim, H. M.; Cho, B. R. Acc. Chem. Res. 2009, 42, 863-872. https://doi.org/10.1021/ar800185u
  38. Kim, H. M.; Cho, B. R. Chem. Asian J. 2011, 6, 58-69. https://doi.org/10.1002/asia.201000542
  39. Binda, C.; Hubalek, F.; Li, M.; Edmondson, D. E.; Mattevi, A. FEBS Letters 2004, 564, 225-228. https://doi.org/10.1016/S0014-5793(04)00209-1
  40. Cohen, G.; Farooqui, R.; Kesler, N. Proc. Natl. Acad. Sci. USA 1997, 94, 4890-4894. https://doi.org/10.1073/pnas.94.10.4890
  41. Riederer, P.; Danielczyk, W.; Grunblatt, E. NeuroToxicology 2004, 25, 271-277. https://doi.org/10.1016/S0161-813X(03)00106-2
  42. Reinikainen, K. J.; Paljarvi, L.; Halonen, T.; Malminen, O.; Kosma, V.-M.; Laakso, M.; Riekkinen, P. J. Neurobiology of Aging 1988, 9, 245-252. https://doi.org/10.1016/S0197-4580(88)80061-7
  43. Flaherty, P.; Castagnoli, K.; Wang, Y.-X.; Castagnoli, N. J. Med. Chem. 1996, 39, 4756-4761. https://doi.org/10.1021/jm960477e
  44. Heikkila, R. E.; Manzino, L.; Cabbat, F. S.; Duvoisin, R. C. Nature 1984, 311, 467-469. https://doi.org/10.1038/311467a0
  45. Long, S.; Chen, L.; Xiang, Y.; Song, M.; Zheng, Y.; Zhu, Q. Chem. Commun. 2012, 7164-7166.
  46. Xiang, Y.; He, B.; Li, X.; Zhu, Q. RSC Advances 2013, 3, 4876-4879. https://doi.org/10.1039/c3ra22789h
  47. Li, L., Zhang, C.-W.; Chen, G. Y. J.; Zhu, B.; Chai, C.; Xu, Q.-H.; Tan, E.-K.; Zhu, Q.; Lim, K.-L.; Yao, S. Q. Nat. Comm. 2014, 5,3276.

Cited by

  1. π-Expanded coumarins: synthesis, optical properties and applications vol.3, pp.7, 2015, https://doi.org/10.1039/C4TC02665A
  2. Two-Photon Small Molecule Enzymatic Probes vol.49, pp.4, 2016, https://doi.org/10.1021/acs.accounts.5b00512
  3. Monitoring of Monoamine Oxidases as Biomarkers of Disease and Disorder vol.39, pp.3, 2018, https://doi.org/10.1002/bkcs.11397