DOI QR코드

DOI QR Code

Fault-Tolerant Control of Five-Phase Induction Motor Under Single-Phase Open

  • Kong, Wubin (Dept. of Electrical Engineering, Zhejiang University) ;
  • Huang, Jin (Dept. of Electrical Engineering, Zhejiang University) ;
  • Kang, Min (Dept. of Electrical Engineering, Zhejiang University) ;
  • Li, Bingnan (Dept. of Electrical Engineering, Zhejiang University) ;
  • Zhao, Lihang (Dept. of Electrical Engineering, Zhejiang University)
  • Received : 2013.08.27
  • Accepted : 2013.12.28
  • Published : 2014.05.01

Abstract

This paper deals with fault-tolerant control of five-phase induction motor (IM) drives under single-phase open. By exploiting a decoupled model for five-phase IM under fault, the indirect field-oriented control ensures that electromagnetic torque oscillations are reduced by particular magnitude ratio currents. The control techniques are developed by the third harmonic current injection, in order to improve electromagnetic torque density. Furthermore, Proportional Resonant (PR) regulator is adopted to realize excellent current tracking performance in the phase frame, compared with Proportional Integral (PI) and hysteresis regulators. The analysis and experimental results confirm the validity of fault-tolerant control under single-phase open.

Keywords

Fault-tolerant;Five-phase induction machine (IM);Decoupled model;Third harmonic current;Proportional Resonant (PR)

References

  1. Hamid A. Toliyat, "Analysis of a concentrated winding induction machine for adjustable speed drive applications," IEEE Trans. Energy Convers., vol. 6, no. 4, pp. 679-683, 1991. https://doi.org/10.1109/60.103641
  2. R. Fu, T. A. Lipo, "Disturbance-free operation of a multiphase current-regulated motor drive with an opened phase," IEEE Trans. Ind. Appl., vol. 30, no. 10, pp. 1267-1274, Sept. 1994. https://doi.org/10.1109/28.315238
  3. E. Levi, R. Bojoi, F. Profumo, "Multiphase induction motor drives - A technology status review," IET Electr. Power Appl., vol. 1, no. 4, pp. 489-516, 2007. https://doi.org/10.1049/iet-epa:20060342
  4. E. Levi, "Multiphase electric machines for variablespeed applications," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1893-1909, 2008. https://doi.org/10.1109/TIE.2008.918488
  5. E. Levi, M. Jones, S. N. Vukosavic and H. A. Toliyat, "A novel concept of a multiphase, multimotor vector controlled drive system supplied from a single voltage source inverter," IEEE Trans. Power Electron., vol. 19, no. 2, pp. 320-335, 2004. https://doi.org/10.1109/TPEL.2003.823241
  6. H. Xu, H. A. Toliyat, L. J. Petersen, "Five-phase induction motor drives with dsp-based control system," IEEE Trans. Power Electron., vol. 17, no. 4, pp. 524-533, 2002. https://doi.org/10.1109/TPEL.2002.800983
  7. L. Parsa and H. A. Toliyat, "Five-phase permanentmagnet motor drives," IEEE Trans. Ind. Appl., vol. 41, no. 1, pp. 30-37, 2005. https://doi.org/10.1109/TIA.2004.841021
  8. H. Xu, H. A. Toliyat, and L. J. Petersen, "Rotor field oriented control of a five-phase induction motor with the combined fundamental and third harmonic currents," Proc. IEEE APEC, Anaheim, CA, vol.1, 2001, pp. 392-398.
  9. Libo Zheng, Fletcher J. E., Williams B. W., "Dualplane vector control of a five-phase induction machine for an improved flux pattern," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1996-2005, 2008. https://doi.org/10.1109/TIE.2008.918464
  10. Y. Zhao and T. A. Lipo, "Modeling and control of a multi-phase induction machine with structural unbalance," Part I: Machine modeling and multidimensional current regulation," IEEE Trans. Energy Convers., vol. 11, no. 3, pp. 570-577, 1996. https://doi.org/10.1109/60.537009
  11. Ayman S A-K, Shady M G, Mahmoud I M, "Optimum flux distribution with harmonic injection for a multiphase induction machine using genetic algorithm," IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 501-512, 2011. https://doi.org/10.1109/TEC.2010.2093139
  12. Abdel-Khalik A S, Masoud M I, Williams Barry W, "Improved flux pattern with third harmonic injection for multiphase induction machines," IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1563-1578, 2012. https://doi.org/10.1109/TPEL.2011.2163320
  13. H.-M. Ryu, J.-W. Kim, and S.-K. Sul, "Synchronousframe current control of multiphase synchronous motor under asymmetric fault condition due to open phases," IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 1062-1070, Jul./Aug. 2006. https://doi.org/10.1109/TIA.2006.876074
  14. Y. Zhao and T. A. Lipo, "Modeling and control of a multi-phase induction machine with structural unbalance," Part II: Field-oriented control and experimental verification," IEEE Trans. Energy Convers., vol. 11, no. 3, pp. 578-584, 1996. https://doi.org/10.1109/60.537028
  15. R. Kiani-Nezhad, B. Nahidmobarakeh, L. Baghli, F. Betin and G. A. Capolino, "Modeling and control of six-phase symmetrical induction machines under fault condition due to open phases," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1966-1977, 2008. https://doi.org/10.1109/TIE.2008.918479
  16. N. Bianchi, S. Bolognani and M. D. Pre, "Strategies for the fault-tolerant current control of a five-phase permanent-magnet motor," IEEE Trans. Ind. Appl., vol. 43, no. 4, pp. 960-970, 2007. https://doi.org/10.1109/TIA.2007.900445
  17. A. Medoued, A. Lebaroud, A. Boukadoum, G. Clerc "On-line faults signature monitoring tool for induction motor diagnosis", Journal of Electrical Engineering & Technology, Vol. 5, No. 1, pp. 140-145, 2010. https://doi.org/10.5370/JEET.2010.5.1.140
  18. Hamid A. Toliyat, L. Parsa, N. Bianchi, "Resilient current control of five-phase induction motor under asymmetrical fault," Proc. IEEE APEC, TX, USA, vol. 1, 2002, pp. 64-71.
  19. S. Dwari and L. Parsa, "Fault-tolerant control of fivephase permanent magnet motors with trapezoidal back EMF," IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 476-485, 2011. https://doi.org/10.1109/TIE.2010.2045322
  20. Tani A., Mengoni M., Zarri L., "Control of Multiphase Induction Motors With an Odd Number of Phases Under Open-Circuit Phase Faults," IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 565-577, 2012.
  21. Del Blanco F. B., Degner M. W., Lorenz R. D., "Dynamic analysis of current regulators for AC motors using complex vectors,", IEEE Trans. Ind. Appl., vol. 35, no. 6, pp. 1424-1432, 1999. https://doi.org/10.1109/28.806058
  22. Zmood D N, Holmes D G., "Stationary frame current regulation of PWM inverters with zero steady-state error", IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814-822, 2003. https://doi.org/10.1109/TPEL.2003.810852
  23. Holmes D. G., McGrath B. P., Parker S. T., "Current regulation strategies for vector-controlled induction motor drives," IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3680-3688, 2012. https://doi.org/10.1109/TIE.2011.2165455
  24. Holmes D. G., Lipo T. A., McGrath B. P., "Optimized Design of Stationary Frame Three Phase AC Current Regulators," IEEE Trans. Ind. Electron., vol. 24, no. 11, pp. 2417-2426, 2009.

Cited by

  1. Fault-Tolerant Control of Paralleled-Voltage-Source-Inverter-Fed PMSM Drives vol.62, pp.8, 2015, https://doi.org/10.1109/TIE.2015.2403795
  2. Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit vol.16, pp.3, 2016, https://doi.org/10.6113/JPE.2016.16.3.1097