DOI QR코드

DOI QR Code

Minimization of a Cogging Torque for an Interior Permanent Magnet Synchronous Machine using a Novel Hybrid Optimization Algorithm

  • Kim, Il-Woo (Hyosung corporation, Changwon plant Special Motor Design Team) ;
  • Woo, Dong-Kyun (Dept. of Electrical and Computer Engineering, Seoul National University) ;
  • Lim, Dong-Kuk (Dept. of Electrical and Computer Engineering, Seoul National University) ;
  • Jung, Sang-Yong (School of Electronic and Electrical Engineering, Sungkyunkwan University) ;
  • Lee, Cheol-Gyun (Electrical Engineering, Dong Eui University) ;
  • Ro, Jong-Suk (Creative Research Engineer Development, Brain Korea 21 Plus, Seoul National University) ;
  • Jung, Hyun-Kyo (Dept. of Electrical and Computer Engineering, Seoul National University)
  • Received : 2013.08.14
  • Accepted : 2013.10.22
  • Published : 2014.05.01

Abstract

Optimization of an electric machine is mainly a nonlinear multi-modal problem. For the optimization of the multi-modal problem, many function calls are required with much consumption of time. To address this problem, this paper proposes a novel hybrid algorithm in which function calls are less than conventional methods. Specifically, the proposed method uses the kriging metamodel and the fill-blank technique to find an approximated solution in a whole problem region. To increase the convergence speed in local peaks, a parallel gradient assisted simplex method is proposed and combined with the kriging meta-model. The correctness and usefulness of the proposed hybrid algorithm is verified through a mathematical test function and applied into the practical optimization as the cogging torque minimization for an interior permanent magnet synchronous machine.

Keywords

Hybrid optimization algorithm;Kriging;Motor;Optimization;Permanent magnet machine;Simplex

References

  1. J. S. Rho, C. H. Lee, and H. K. Jung, Optimal design of ultrasonic motor using evolution strategy and finite element method, International Journal of Applied Electromagnetics and Mechanics, vol. 25, no. 1, pp. 699-704, Jul. 2007.
  2. J. S. Rho, C. H. Lee, T. K. Chung, C. H. Im, and H. K. Jung, Analysis of a nanopositioning actuator using numerical and analytic methods, Smart Materials & Structures, vol. 17, no. 2, Feb. 2008.
  3. D. K. Woo, J. H. Choi, A. Mohammad, and H. K. Jung, A novel multimodal optimization algorithm applied to electromagnetic optimization, Magnetics, IEEE Transactions on, vol. 47, no. 6, pp. 1667-1673, Jun. 2011. https://doi.org/10.1109/TMAG.2011.2106218
  4. H. Jung, W. Jeon, C. G. Lee, S. C. Hahn, and S. Y. Jung, Optimal design of direct-driven PM wind generator aimed for maximum AEP using parallel computing GA, Journal of Electrical Engineering & Technology, vol. 3, no. 4, pp. 552-558, 2008. https://doi.org/10.5370/JEET.2008.3.4.552
  5. D. Wang, X. Wang, M. K. Kim, and S. Y. Jung, Integrated optimization of two design techniques for cogging torque reduction combined with analytical method by a simple gradient descent method, Magnetics, IEEE Transactions on, vol. 48, no. 8, pp. 2265-2276, Aug. 2012. https://doi.org/10.1109/TMAG.2012.2191416
  6. D. Lee, K. W. Jeon, S. Y. Jung, and J. W. Kim, Optimal design of interior PM synchronous machines using randomly guided mesh adaptive direct search algorithm, Sixth International Conference on Electromagnetic Field Problems and Applications (ICEF), 19-21, Jun. 2012.
  7. S. Y. Lee, J. H. Seo, S. Y. Kwak, C. G. Lee, S. Y. Jung, and H. K. Jung, Optimal design of outer rotor per-manent magnet machine using improved particle swarm optimization, Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on, pp. 3297-3300, Oct. 2008.
  8. M. J. Kim, J. W. Lim, J. H. Seo and H. K. Jung, Hybrid optimization strategy using response surface methodology and genetic algorithm for reducing cogging torque of SPM, Journal of Electrical Engineering & Technology, vol. 6, no. 2, pp. 202-207, 2011. https://doi.org/10.5370/JEET.2011.6.2.202
  9. J. S. Chun, H. K. Jung, and J. S. Yoon, Shape optimization of closed slot type permanent magnet motors for cogging torque reduction using evolution strategy, Magnetics, IEEE Transactions on, vol. 33, no. 2, pp. 1912-1915, Mar. 1997. https://doi.org/10.1109/20.582663
  10. Y.M. Yoo, D.K. Kim, and B.I. Kwon, "Optimal Design of a Permanent Magnetic Actuator for Vacuum Circuit Breaker using FEM, Journal of Electrical Engineering & Technology, Vol. 1, No. 1, pp. 92-97, 2006. https://doi.org/10.5370/JEET.2006.1.1.092
  11. C. H. Im, H. K. Kim, H. K. Jung, and K. Choi, A novel algorithm for multimodal function optimization based on evolution strategy, Magnetics, IEEE Transactions on, vol. 40, no. 2, pp. 1224-1227, Mar. 2004. https://doi.org/10.1109/TMAG.2004.824805
  12. J. H. Seo, C. H. Im, C. G. Heo, J. K. Kim, H. K. Jung, and C. G. Lee, Multimodal function optimization based on particle swarm optimization, Magnetics, IEEE Transactions on, vol. 42, no. 4, pp. 1095-1098, Apr. 2006. https://doi.org/10.1109/TMAG.2006.871568
  13. J. Denies, H. Ben Ahmed, B. Dehez, Optimal design of electromagnetic devices: development of an efficient optimization tool based on smart mutation operations implemented in a genetic algorithm, Mathematics and Computers in Simulation, In Press, Accepted Manuscript, Available online 29 January 2013.
  14. J. M. Kim, and S. K. Sul, Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation, Industry Applications, IEEE Transactions on, vol. 33, no. 1, pp. 43-48, Jan./Feb. 1997. https://doi.org/10.1109/28.567075
  15. Viviana Cocco Mariani, Leandro dos Santos Coelho, A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization, Mathematics and Computers in Simulation, vol. 81, Issue 9, pp. 1901-1909, May 2011. https://doi.org/10.1016/j.matcom.2011.02.009
  16. Jiang Chuanwen, Etorre Bompard, A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimization, Mathematics and Computers in Simulation, vol. 68, Issue 1, 3, pp. 57-65, Feb 2005. https://doi.org/10.1016/j.matcom.2004.10.003
  17. G. Dellino, P. Lino, C. Meloni, A. Rizzo, Kriging metamodel management in the design optimization of a CNG injection system, Mathematics and Computers in Simulation, vol. 79, Issue 8, pp. 2345-2360, Apr 2009. https://doi.org/10.1016/j.matcom.2009.01.013
  18. K. C. Kim, D. H. Koo, J. P. Hong, and J. Lee, A study on the characteristics due to pole-arc to pole-pitch ratio and saliency to improve torque performance of IPMSM, Magnetics, IEEE Transactions on, vol. 43, no. 6, pp. 2516-2518, Jun. 2007. https://doi.org/10.1109/TMAG.2007.893524
  19. L. Parsa and L. Hao, Interior permanent magnet motors with reduced torque pulsation, Industrial Electronics, IEEE Transactions on, vol. 55, no. 2, pp. 602-609, Feb. 2008. https://doi.org/10.1109/TIE.2007.911953
  20. Z. Q. Zhu, S. Ruangsinchaiwanich, N. Schofield, and D. Howe, Reduction of cogging torque in interiormagnet brushless machines, Magnetics, IEEE Transactions on, vol. 39, no. 5, pp. 3238-3240, Sep. 2003. https://doi.org/10.1109/TMAG.2003.816733
  21. E. Refaie, and A. M., Fractional-slot concentratedwindings synchronous permanent magnet machines: opportunities and challenges, Industrial Electronics, IEEE Transactions on, vol. 57, no. 1, pp. 107-121, Jan. 2010. https://doi.org/10.1109/TIE.2009.2030211
  22. N. Bianchi, and S. Bolognani, Design techniques for reducing the cogging torque in surface-mounted PM motors, Industry Applications, IEEE Transactions on, vol. 38, no. 5, pp. 1259-1265, Sep./Oct. 2002. https://doi.org/10.1109/TIA.2002.802989
  23. G. Barakat, T. El-meslouhi, and B. Dakyo, Analysis of the cogging torque behavior of a two-phase axial flux permanent magnet synchronous machine, Magnetics, IEEE Transactions on, vol. 37, no. 4, pp. 2803-2805, Jul. 2001. https://doi.org/10.1109/20.951312
  24. F. Caricchi, F. G. Capponi, F. Crescimbini, L. Solero, Experimental study on reducing cogging torque and no-load power loss in axial-flux permanent-magnet machines with slotted winding, Industry Applications, IEEE Transactions on, vol. 40, no. 4, pp. 1066-1075, Jul./Aug. 2004. https://doi.org/10.1109/TIA.2004.831273
  25. J. T. Chen, Z. Q. Zhu, S. Iwasaki, R. P. Deodhar, Influence of slot opening on optimal stator and rotor pole combination and electromagnetic performance of switched-flux PM brushless AC machines, Industry Applications, IEEE Transactions on, vol. 47, no. 4, pp. 1681-1691, Jul./Aug. 2011. https://doi.org/10.1109/TIA.2011.2155011
  26. D. Wang, X. Wang, and S. Y. Jung, Reduction on cogging torque in flux-switching permanent magnet machine by teeth notching schemes, Magnetics, IEEE Transactions on, vol. 48, no. 11, pp. 4228-4231, Nov. 2012. https://doi.org/10.1109/TMAG.2012.2200237
  27. D. Wang, X. Wang, D. Qiao, Y. Pei, and S. Y. Jung, Reducing cogging torque in surface-mounted permanent-Magnet motors by nonuniformly distributed teeth method, Magnetics, IEEE Transactions on, vol. 47, no. 9, pp. 2231-2239, Sep. 2011. https://doi.org/10.1109/TMAG.2011.2144612
  28. P. Yong, Z. Q. Zhu, and Z. J. Feng, Cogging torque in cost-effective surface-mounted permanent-magnet machines, Magnetics, IEEE Transactions on, vol. 47, no. 9, pp. 2269-2276, Sep. 2011. https://doi.org/10.1109/TMAG.2011.2147326
  29. G. W. Cho, W. S. Jang, K. B. Jang, and G. T. Kim, "The Optimal Design of Fractional-slot SPM to Reduce Cogging Torque and Vibration," Journal of Electrical Engineering & Technology Vol. 7, No. 5, pp. 753-758, 2012. https://doi.org/10.5370/JEET.2012.7.5.753
  30. A. Goto, T. Okamoto, A. Ikariga, T. Todaka, and M. Enokizono, "A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent Magnet Arrangement," Journal of Electrical Engineering & Technology Vol. 7, No. 3, pp. 342-348, 2012. https://doi.org/10.5370/JEET.2012.7.3.342

Cited by

  1. A Novel Sequential-Stage Optimization Strategy for an Interior Permanent Magnet Synchronous Generator Design vol.65, pp.2, 2018, https://doi.org/10.1109/TIE.2017.2739685
  2. Analytical prediction of cogging torque for interior permanent magnet synchronous motors vol.55, pp.4, 2017, https://doi.org/10.3233/JAE-9170094
  3. A Novel Surrogate-Assisted Multi-Objective Optimization Algorithm for an Electromagnetic Machine Design vol.51, pp.3, 2015, https://doi.org/10.1109/TMAG.2014.2359452
  4. Optimal Design of an Interior Permanent Magnet Synchronous Motor by Using a New Surrogate-Assisted Multi-Objective Optimization vol.51, pp.11, 2015, https://doi.org/10.1109/TMAG.2015.2449872
  5. A Hybrid Algorithm Using Shape and Topology Optimization for the Design of Electric Machines vol.54, pp.3, 2018, https://doi.org/10.1109/TMAG.2017.2764753
  6. A Strategy-Selecting Hybrid Optimization Algorithm to Overcome the Problems of the No Free Lunch Theorem vol.54, pp.3, 2018, https://doi.org/10.1109/TMAG.2017.2750204
  7. A New Surrogate-assisted Robust Multi-objective Optimization Algorithm for an Electrical Machine Design pp.2093-7423, 2019, https://doi.org/10.1007/s42835-019-00120-1