DOI QR코드

DOI QR Code

Antioxidant and Nitrite Scavenging Activities of Acanthopanax senticosus Extract Fermented with Different Mushroom Mycelia

버섯균사체를 달리한 발효가시오가피 추출물의 항산화 활성 및 아질산염 소거능

  • Kim, Dan-Bi (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Shin, Gi Hae (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Jong Seok (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Ok-Hwan (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Park, In-Jae (Hurum Central Research Institute) ;
  • Cho, Ju-Hyun (Hurum Central Research Institute)
  • 김단비 (강원대학교 식품생명공학과) ;
  • 신기해 (강원대학교 식품생명공학과) ;
  • 이종석 (강원대학교 식품생명공학과) ;
  • 이옥환 (강원대학교 식품생명공학과) ;
  • 박인재 ((주) 휴럼 중앙연구소) ;
  • 조주현 ((주) 휴럼 중앙연구소)
  • Received : 2013.09.05
  • Accepted : 2013.12.16
  • Published : 2014.04.30

Abstract

This study was designed to investigate the antioxidant activities (ORAC value, DPPH and ABTS radical scavenging activity, FRAP activity, and reducing power) and nitrite scavenging activities of Acanthopanax senticosus extracts fermented with the mycelia of three different mushroom species: Ganoderma lucidum, Phellinus linteus, and Hericium erinaceus. The highest total phenol content (42.09 GAE mg/g) and ORAC value ($74,912{\mu}M$ TE/g) were observed in a hot water extract of A. senticosus fermented with G. lucidum. The highest DPPH radical and nitrite scavenging activities were observed in a 70% ethanol extract of A. senticosus fermented with G. lucidum. In addition, ABTS radical scavenging activity (8-88%), FRAP activity (0.1-0.2), and reducing power (0.3-0.7) were increased by ethanol addition in all samples in a dose-dependent manner. These results provide a basic understanding of the antioxidant and nitrite-scavenging activities of A. senticosus extracts fermented with different mushroom mycelia.

Acknowledgement

Supported by : 농림축산식품부

References

  1. Chang SY, Ryu KS, Lee DH, Seo YK. Program the annaul convention of the Korean society of pharmacognosy: studies on the lignan group from Acanthopanax sessiliflorum. Korean J. Pharmacogn. 7: 255-255 (1976)
  2. Kim CW, Lee HY. Studies on the constituents of seeds of Acanthopanax senticosus for inermis Harms. Korean J. Pharmacogn. 21: 235-238 (1990)
  3. Ko SK, Kim JS, Choi YE, Lee SJ, Park KS, Chung SH. Antidiabetic effects of mixed water extract from Ginseng radix rubra, Acanthopanacis cortex, and Cordyceps. Korean J. Pharmacogn. 33: 337-342 (2002)
  4. Lim SD, Seong KS, Kim KS, Han DU. Effects of fermented milk with hot water extract from Acanthopanax senticosus and codonopsis lanceolata on the immune status of mouse. Korean J. Food Sci. Technol. 39: 323-329 (2007)
  5. Fujikawa T, Yamaguchi A, Morita I, Takeda H, Nishibe S. Protective effects of Acanthopanax senticosus harms from Hokkaido and its components on gastric ulcer in restrained cold water stressed rats. Biol. Pharm. Bull. 19: 1227 (1996) https://doi.org/10.1248/bpb.19.1227
  6. Jung HJ, Park HJ, Kim RG, Shin KM, Ha J, Choi JW, Kim HJ, Lee YS, Lee KT. In vivo anti-inflammatory and antinociceptive effects of liriodendrin isolated from the stem bark of Acanthopanax senticosus. Planta. Med. 69: 610-616 (2003) https://doi.org/10.1055/s-2003-41127
  7. Cha YS, Rhee SJ, Heo YR. Acanthopanax senticosus extract prepared from cultured cells decreases adiposity and obesity indices in C57BL/6J mice fed a high fat diet. J. Med. Food 7: 422-429 (2004) https://doi.org/10.1089/jmf.2004.7.422
  8. Lin QY, Jin LJ, Cao ZH, Lu YN, Xue HY, Xu YP. Acanthopanax senticosus suppresses reactive oxygen species production by mouse peritoneal macrophages in vitro and in vivo. Phytother. Res. 22: 740-745 (2008) https://doi.org/10.1002/ptr.2341
  9. Kim H, Yoon HS, Jeong JH, Jeong HS, Hwang JH, Yu KW. Enhancement of immunostimulation by fractionation of active polysaccharide from fermented ginseng with Phellinus linteus Mycelium in solid culture. Korean J. Food Sci. 42: 223-232 (2010)
  10. Lee TS, Han EH. Volatile flavor components in mash of takju prepared by using Rhizopus japonicus nuruks. Korean J. Food Sci. Technol. 32: 691-698 (2000)
  11. Wang SY, Hsu ML, Hsu HC, Lee SS, Shiao MS, Ho CK. The antitumor effect of Ganoderma Lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J. Cancer Suppl. 70: 699-705 (1997) https://doi.org/10.1002/(SICI)1097-0215(19970317)70:6<699::AID-IJC12>3.0.CO;2-5
  12. Kim SH, Song YS, Kim SK, Kim BC, Lim CJ, Park EH. Antiinflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus. J. Ethnopharmacol. 93: 141-146 (2004) https://doi.org/10.1016/j.jep.2004.03.048
  13. Ou B, Hampsch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agr. Food Chem. 49: 4619-4626 (2001) https://doi.org/10.1021/jf010586o
  14. Kim H, Jeong JH, Hwang JH, Jeong HS, Lee HY, Yu KW. Enhancement of immunostimulation and anti-metastasis in submerged culture of bearded tooth mushroom (Hericium erinaceum) Mycelia by addition of ginseng extract. Food Sci. Biotechnol. 19: 1259-1266 (2010) https://doi.org/10.1007/s10068-010-0180-1
  15. Tawaha K, Alali FQ, Gharaibeh M, Mohammad M, El-Elimat T. Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem. 104: 1372-1378 (2007) https://doi.org/10.1016/j.foodchem.2007.01.064
  16. Kim IS, Yang MR, Lee OH, Kang SN. Antioxidant activities of hot water extracts from various spices. Int. J. Mol. Sci. 12: 4120-4131 (2011) https://doi.org/10.3390/ijms12064120
  17. Ozgen M, Reese RN, Tulio AZ, Scheerens JC, Miller AR. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agr. Food Chem. 54: 1151-1157 (2006) https://doi.org/10.1021/jf051960d
  18. Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agr. Food Chem. 57: 1768-1774 (2009) https://doi.org/10.1021/jf803011r
  19. Jeong JW, Lee YC, Jung SW, Lee KM. Flavor components of citron juice as affected by the extraction method. Korean J. Food Sci. Technol. 26: 709-712 (1994)
  20. Jayaprakasha GK, Singh RP, Sakariah KK. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 73: 285-290 (2001) https://doi.org/10.1016/S0308-8146(00)00298-3
  21. Joung EM, Hwang IG, Lee HY, Jeong JH, Yu KW, Jeong HS. Changes of saponin and $\beta$-glucan content on the cultured ginseng with mushroom mycelia. J. Korean Soc. Food Sci. Nutr. 38: 1084-1089 (2009) https://doi.org/10.3746/jkfn.2009.38.8.1084
  22. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agr. Biol. Chem. Tokyo 51: 1333-1338 (1987) https://doi.org/10.1271/bbb1961.51.1333
  23. Kaur C, Kapoor HC. Antioxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Tech. 37: 153-161 (2002) https://doi.org/10.1046/j.1365-2621.2002.00552.x
  24. Machowetz A, Poulsen HE, Gruendel S, Weimann A, FitM, Marrugat J, de la Torre R, Salonen JT, Nyyssnen K, Mursu J, Nascetti S, Gaddi A, Kiesewetter H, Bumler H, Selmi H, Kaikkonen J, Zunft HJ, Covas MI, Koebnick C. Effect of olive oils on biomarkers of oxidative DNA stress in Northern and Southern Europeans. FASEB J. 21: 45-52 (2007)
  25. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13: 572-584 (2002) https://doi.org/10.1016/S0955-2863(02)00208-5
  26. Heo SJ, Ahn HY, Kang MJ, Lee JH, Chaz JY, Cho YS. Antioxidative Activity and Chemical Characteristics of Leaves, Roots, Stems and Fruits Extracts from Acanthopanax senticosus. J. Life Sci. 21: 1052-1059 (2011) https://doi.org/10.5352/JLS.2011.21.7.1052
  27. Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J. Agr. Food Chem. 50: 3122-3128 (2002) https://doi.org/10.1021/jf0116606
  28. Prior RL, Cao G, Martin A, Sofic E, McEwen J, O'Brien C, Mainland CM. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agr. Food Chem. 46: 2686-2693 (1998) https://doi.org/10.1021/jf980145d
  29. Bondet V, Brand-Williams W, Berset C. Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT-Food Sci. Technol. 30: 609-615 (1997) https://doi.org/10.1006/fstl.1997.0240
  30. Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ, Ro HM, Chung IM. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J. Agr. Food Chem. 56: 7265-7270 (2008) https://doi.org/10.1021/jf8008553
  31. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  32. Wang MF, Shao Y, Li JG, Rngarajan M, Lavoie EJ, Huang TC, Ho CT. Antioxidative phenolic compounds from sage (Salivia officinalis). J. Agr. Food Chem. 46: 4869-4873 (1998) https://doi.org/10.1021/jf980614b
  33. Bolling BW, Chen YY, Kamil AG, Oliver Chen CY. Assay dilution factors confound measures of total antioxidant capacity in polyphenolrich juices. J. Food Sci. 77: H69-H75 (2012) https://doi.org/10.1111/j.1750-3841.2011.02538.x
  34. Jin Q, Park JR, Kim JB, Cha MH. Physiological activity of zizyphus jujaba leaf extracts. J. Koraen Soc. Food Sci. Nutr. 28: 593-598 (1999)
  35. Cooney RV, Ross PD, Bartolini GL. N-nitrosation and N-nitration of morpholine by nitrogen dioxide: Inhibition by ascorbate, glutathione and ${\alpha}$-tocopherol. Cancer Lett. 32: 83-90 (1986) https://doi.org/10.1016/0304-3835(86)90042-X
  36. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agr. Food Chem. 51: 6657-6662 (2003) https://doi.org/10.1021/jf034790i

Cited by

  1. Cellular Anti-Melanogenic Effects of a Euryale ferox Seed Extract Ethyl Acetate Fraction via the Lysosomal Degradation Machinery vol.16, pp.5, 2015, https://doi.org/10.3390/ijms16059217
  2. Antioxidant activity of extracts with extraction methods from Phellinus linteus mycelium on Mori ramulus vol.21, pp.4, 2014, https://doi.org/10.11002/kjfp.2014.21.4.565
  3. Antioxidant and Anti-Obesity Activity of Ethanol Extracts from Fermented Arctium lappa L. vol.28, pp.5, 2015, https://doi.org/10.9799/ksfan.2015.28.5.752
  4. Antioxidant Activity and Changes in Major Functional Components of Fermented Gastrodia elata Blume vol.27, pp.4, 2014, https://doi.org/10.9799/ksfan.2014.27.4.684
  5. Eleutherosides Extraction from Acanthopanax sessiliflorus Seeman and Eleutherococcus senticosus Maxim Using an Enzymatic Process vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1273
  6. Quality Characteristics and Antioxidant Activity of Noodles added with Chinese Artichoke Powder vol.27, pp.1, 2017, https://doi.org/10.17495/easdl.2017.2.27.1.61
  7. Acute and subchronic (13-week) toxicity of fermented Acanthopanax koreanum extracts in Sprague Dawley rats vol.77, 2016, https://doi.org/10.1016/j.yrtph.2016.02.017
  8. Effect of Fermented Herbal Mixture against Oxidative Stress in HepG2 and PC12 Cells vol.45, pp.7, 2016, https://doi.org/10.3746/jkfn.2016.45.7.1057
  9. Biological Activity of Ethanol Extracts from Fermented Opuntia humifusa with 3 Different Mushroom Mycelia vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.620