Molecular Characterization and Expression Analysis of Equine Vascular Endothelial Growth Factor Alpha (VEGFα) Gene in Horse (Equus caballus)

  • Song, Ki-Duk (Genomic Informatics Center, Hankyong National University) ;
  • Cho, Hyun-Woo (Department of Animal Science, College of Nature Resources and Life Science, Pusan National University) ;
  • Lee, Hak-Kyo (Genomic Informatics Center, Hankyong National University) ;
  • Cho, Byung Wook (Department of Animal Science, College of Nature Resources and Life Science, Pusan National University)
  • Received : 2013.12.16
  • Accepted : 2014.03.18
  • Published : 2014.05.01


The objective of this study was to determine the molecular characteristics of the horse vascular endothelial growth factor alpha gene ($VEGF{\alpha}$) by constructing a phylogenetic tree, and to investigate gene expression profiles in tissues and blood leukocytes after exercise for development of suitable biomarkers. Using published amino acid sequences of other vertebrate species (human, chimpanzee, mouse, rat, cow, pig, chicken and dog), we constructed a phylogenetic tree which showed that equine $VEGF{\alpha}$ belonged to the same clade of the pig $VEGF{\alpha}$. Analysis for synonymous (Ks) and non-synonymous substitution ratios (Ka) revealed that the horse $VEGF{\alpha}$ underwent positive selection. RNA was extracted from blood samples before and after exercise and different tissue samples of three horses. Expression analyses using reverse transcription-polymerase chain reaction (RT-PCR) and quantitative-polymerase chain reaction (qPCR) showed ubiquitous expression of $VEGF{\alpha}$ mRNA in skeletal muscle, kidney, thyroid, lung, appendix, colon, spinal cord, and heart tissues. Analysis of differential expression of $VEGF{\alpha}$ gene in blood leukocytes after exercise indicated a unimodal pattern. These results will be useful in developing biomarkers that can predict the recovery capacity of racing horses.


  1. Brodal, P., F. Ingjer, and L. Hermansen. 1977. Capillary supply of skeletal muscle fibers in untrained and endurance-trained men. Am. J. Physiol. Heart Circ. Physiol.232:H705-H712.
  2. Auer, D. E., J. C. Ng, J. Hrdlicka, and A. A. Seawright. 1989. The elimination of injected superoxide dismutase from synovial fluid of the horse. Aust. Vet. J. 66:117-119.
  3. Bertone, A. L., J. L. Palmer, and J. Jones. 2001. Synovial fluid cytokines and eicosanoids as markers of joint disease in horses. Vet. Surg. 30:528-538.
  4. Breen, E. C., E. C. Johnson, H. Wagner, H. M. Tseng, L. A. Sung, and P. D. Wagner. 1996. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J. Appl. Physiol. 81:355-361.
  5. Brutsaert, T. D., T. P. Gavin, Z. Fu, E. C. Breen, K. Tang, O. Mathieu-Costello, and P. D. Wagner. 2002. Regional differences in expression of VEGF mRNA in rat gastrocnemius following 1 hr exercise or electrical stimulation. BMC Physiol. 2:8
  6. Bustamante, C. D., A. Fledel-Alon, S. Williamson, R. Nielsen, M. T. Hubisz, S. Glanowski, D. M. Tanenbaum, T. J. White, J. J. Sninsky, R. D. Hernandez, D. Civello, M. D. Adams, M. Cargill, and A. G. Clark. 2005. Natural selection on proteincoding genes in the human genome. Nature 437:1153-1157.
  7. Essen-Gustavsson, B. and A. Lindholm. 1985. Muscle fibre characteristics of active and inactive standard bred horses. Equine Vet. J. 17:434-438.
  8. Firth, E. C. 2006. The response of bone, articular cartilage and tendon to exercise in the horse. J. Anat. 208:513-526.
  9. Lamprecht, E. D., C. A. Bagnell, and C. A. Williams. 2008. Inflammatory responses to three modes of intense exercise in Standardbred mares-A pilot study. Comp. Exer. Physiol. 5:115-125.
  10. Hinchcliff, K. W. and R. J. Geor. 2008. The Horse as an Athlete: A Physiological Overview. Equine exercise physiology: The science of exercise in the atheletic horse. Saunders/Elsevier, Edinburgh, UK, New York, USA. pp ix, 463.
  11. Hyyppa, S., L. A. Rasanen, and A. R. Poso. 1997. Resynthesis of glycogen in skeletal muscle from standardbred trotters after repeated bouts of exercise. Am. J. Vet. Res. 58:162-166.
  12. Jiang, B. H., E. Rue, G. L. Wang, R. Roe, and G. L. Semenza. 1996. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271:17771-17778.
  13. Lindner, A., R. Signorini, L. Brero, E. Arn, R. Mancini, and A. Enrique. 2006. Effect of conditioning horses with short intervals at high speed on biochemical variables in blood. Equine Vet. J. 38(Suppl. 36):88-92.
  14. Lindner, A., H. Mosen, S. Kissenbeck, H. Fuhrmann, and H. P. Sallmann. 2009. Effect of blood lactate-guided conditioning of horses with exercises of differing durations and intensities on heart rate and biochemical blood variables. J. Anim. Sci. 87:3211-3217.
  15. Livak, K. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta{\Delta}CT}$ method. Methods 25:402-408.
  16. Park, K. D., J. S. Park, J. S. Ko, B. C. Kim, H. S. Kim, K. Ann, K. T. Do, H. S. Choi, H. M. Kim, S. H. Song, S. W. Lee, H. S. Kong, Y. M. Yang, B. H. Jhun, C. H. Kim, T. H. Kim, S. W. Hwang, J. Bhak, J. K. Lee, and B. W. Cho. 2012. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNA-Seq. BMC Genomics 13:473.
  17. Richardson, R. S., H. Wagner, S. R. D. Mudaliar, E. Saucedo, R. Henry, and P. D. Wagner. 2000. Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 279:H772-H778.
  18. Petersen, H. H., J. P. Nielsen, and P. M. Heegaard. 2004. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 35:163-187.
  19. Poso, A. R., B. Essen-Gustavsson, and S. G. Persson. 1993. Metabolic response to standardbred trotters with red-cell hypervolemia. Equine Vet. J. 25:527-531.
  20. Richardson, R. S., H. Wagner, S. R. Mudaliar, R. Henry, E. A. Noyszewski, and P. D. Wagner. 1999. Human VEGF gene expression in skeletal muscle: Effect of acute normoxic and hypoxic exercise. Am. J. Physiol. Heart Circ. Physiol. 277:H2247-2252.
  21. Roca, J., T. P. Gavin, M. Jordan, N. Siafakas, H. Wagner, H. Benoit, E. Breen, and P. D. Wagner. 1998. Angiogenic growth factor mRNA responses to passive and contraction-induced hyperperfusion in skeletal muscle. J. Appl. Physiol. 85:1142-1149.
  22. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  23. Streltsova, J. M., K. H. McKeever, N. R. Liburt, M. E. Gordon, H. M. Filhoa, D. W. Horohova, R. T. Rosena, and W. Frankeet. 2006. Effect of orange peel and black tea extracts on markers of performance and cytokine markers of inflammation. Equine Comp. Exerc. Physiol. 3:121-130.
  24. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.

Cited by

  1. Molecular Characterization and Expression Analysis of Creatine Kinase Muscle (CK-M) Gene in Horse vol.28, pp.12, 2015,