DOI QR코드

DOI QR Code

Effects of Feeding Rate and Water Temperature on Growth and Body Composition of Juvenile Korean Rockfish, Sebastes schlegeli (Hilgendorf 1880)

  • Mizanur, Rahman Md. (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Yun, Hyeonho (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Moniruzzaman, M. (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Ferreira, F. (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University) ;
  • Kim, Kang-Woong (Aquafeed Research Center, East Sea Fisheries Research Institute, National Fisheries Research and Development Institute (NFRDI)) ;
  • Bai, Sungchul C. (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
  • Received : 2013.08.15
  • Accepted : 2014.01.08
  • Published : 2014.05.01

Abstract

Three feeding trials were conducted to evaluate the effects of feeding rate and water temperature on growth and body composition of juvenile Korean rockfish, Sebastes schlegeli rearing at 3 different water temperatures. A total of 270 fish (each experiment) individual body weight (BW) averaging $16{\pm}0.3g$ ($mean{\pm}SD$) were fed a commercial diet for 4 wk at $16^{\circ}C$, $20^{\circ}C$, and $24^{\circ}C$. At each temperature, triplicate tanks were assigned to one of 6 feeding rates: 1.5%, 2.5%, 2.8%, 3.1%, 3.4%, and satiation (3.7% BW/d) at $16^{\circ}C$, 1.9%, 2.9%, 3.2%, 3.5%, 3.8% and satiation (4.1% BW/d) at $20^{\circ}C$ and 1.7%, 2.7%, 3.0%, 3.3%, 3.6%, and satiation (3.9% BW/d) at $24^{\circ}C$ water temperature. Weight gains of fish in satiation and 3.4% groups at $16^{\circ}C$, in satiation and 3.8% groups at $20^{\circ}C$ and in satiation and 3.6% groups at $24^{\circ}C$ were significantly higher than those of fish in the other treatments (p<0.05). A broken line regression analysis of weight gain indicated that optimum feeding rates of juvenile Korean rockfish were 3.41% at $16^{\circ}C$, 3.75% at $20^{\circ}C$ and 3.34% at $24^{\circ}C$ water temperature. Results of the present study indicate that the optimum feeding rate could be >3.1% but <3.41% at $16^{\circ}C$, >3.5% but <3.75% at $20^{\circ}C$ and >3.0% but <3.34% at $24^{\circ}C$. As we expected results suggest that fish performed better at $20^{\circ}C$ than $16^{\circ}C$ or $24^{\circ}C$ water temperature and the optimum feeding rate could be 3.1% BW/d to 3.7% BW/d in 16 g of juvenile Korean rockfish.

References

  1. Molnar, T., A. Szabo, G. Szabo, C. Szabo, and C. Hancz. 2006. Effect of different dietary fat content and fat type on the growth and body composition of intensively reared pikeperch Sander lucioperca (L.). Aquacult. Nutr. 12:173- 182. https://doi.org/10.1111/j.1365-2095.2006.00398.x
  2. Nyina-Wamwiza, L., X. L. Xu, G. Blanchard, and P. Kestemont. 2005. Effect of dietary protein, lipid and carbohydrate ratio on growth, feed efficiency and body composition of pikeperch Sander lucioperca fingerlings. Aquac. Res. 36:486-492. https://doi.org/10.1111/j.1365-2109.2005.01233.x
  3. Ozorio, R. O. A., C. Andrade, V. M. F. A. Timoteo, L. E. C. Conceicao, and L. M. P. Valente. 2009. Effects of feeding levels on growth response, body composition, and energy expenditure in blackspot seabream, Pagellus bogaraveo, Juveniles. J. World Aquac. Soc. 40:95-103. https://doi.org/10.1111/j.1749-7345.2008.00231.x
  4. Oh, S. Y., C. H. Noh, R. H. Kang, C. K. Kim, S. H. Cho, and J. Y. Jo. 2008. Compensatory growth and body composition of juvenile black rockfish Sebastes schlegeli following feed deprivation. Fish. Sci. 74:846-852. https://doi.org/10.1111/j.1444-2906.2008.01598.x
  5. Okorie, O. E., J. Y. Bae, K. W. Kim, M. H. Son, J. W. Kim, and S. C. Bai. 2013. Optimum feeding rates in juvenile olive flounder, Paralichthys olivaceus, at the optimum rearing temperature. Aquac. Nutr. 19:267-277. https://doi.org/10.1111/j.1365-2095.2012.00956.x
  6. Oyugi, D., J. Cucherousset, J. M. Ntiba, S. M. Kisia, D. M. Harper, and J. R. Britton. 2011. Life history traits of an equatorial carp Cyprinus carpio population in relation to thermal influences on invasive populations. Fish. Res. 110:92-97. https://doi.org/10.1016/j.fishres.2011.03.017
  7. Person-Le, R. J., V. Buchet, B. Vincent, D. H. Le, and L. Quemener. 2006. Effects of temperature on the growth of Pollack (Pollachius pollachius) juveniles. Aquaculture 251:340-345. https://doi.org/10.1016/j.aquaculture.2005.06.029
  8. Qiao, G., S. I. Park, and D. H. Xu. 2012. Clinical, hematological and biochemical alterations in Olive flounder Paralichthys olivaceus following experimental infection by Vibrio scophthalmi. Fish Aquat. Sci. 15:233-239.
  9. Robbins, K. R., H. W. Norton, and D. H. Baker. 1979. Estimation of nutrient requirements from growth data. J. Nutr. 109:1710-1714.
  10. Ronyai, A. and I. Csengeri. 2008. Effect of feeding regime and temperature on on-growing results of pikeperch (Sander lucioperca L.). Aquac. Res. 39:820-827. https://doi.org/10.1111/j.1365-2109.2008.01935.x
  11. Schulz, C., M. Huber, J. Ogunji, and B. Rennert. 2008. Effects of varying dietary protein to lipid ratios on growth performance and body composition of juvenile pike perch (Sander lucioperca). Aquac. Nutr. 14:166-173. https://doi.org/10.1111/j.1365-2095.2007.00516.x
  12. Cho, S. H., Y. S. Lim, J. H. Lee, and S. Park. 2003. Effect of feeding rate and feeding frequency on survival, growth, and body composition of Ayu post-larvae Plecoglossus altivelis. J. World Aquac. Soc. 34:85-91. https://doi.org/10.1111/j.1749-7345.2003.tb00042.x
  13. Turker, A. 2009. Effect of photoperiod on growth of trout (Oncorhynchus mykiss) in cold ambient sea water. Israel J. Aquac. (Bamidgeh) 61:57-62.
  14. Kim, K. D., Y. J. Kang, K. W. Kim, and K. M. Kim. 2007. Effects of feeding rate on growth and body composition of juvenile flounder. J. World Aquac. Soc. 38:169-173. https://doi.org/10.1111/j.1749-7345.2006.00086.x
  15. Mizanur, R. M., G. Park, H. H. Yun, S. Lee, S. Choi, and S. C. Bai. 2013. The effects of feeding rates in juvenile Korean rockfish (Sebastes schlegeli) reared at 17$^{\circ}C$ and 20$^{\circ}C$ water temperatures. Aquacult. Int. (In press).
  16. Cho, S. H. 2005. Compensatory growth of juvenile flounder Paralichthys olivaceous L. and changes in biochemical composition and body condition indices during starvation and after refeeding in the winter season. J. World Aquac. Soc. 36:508-514. https://doi.org/10.1111/j.1749-7345.2005.tb00398.x
  17. Cho, S. H., S. M. Lee, B. H. Park, and S. Lee. 2006. Effect of feeding ratio on growth and body composition of juvenile olive flounder Paralichthys olivaceus fed extruded pellets during the summer season. Aquaculture 251:78-84. https://doi.org/10.1016/j.aquaculture.2005.05.041
  18. Cho, S. H., S. M. Lee, B. H. Park, S. C. Ji, C. Y. Choi, J. H. Lee, Y. C. Kim, J. H. Lee, and S. Y. Oh. 2007. Effect of daily feeding ratio on growth and body composition of subadult olive flounder, Paralichthys olivaceus, fed an extruded diet during the summer season. J. World Aquac. Soc. 38:68-73. https://doi.org/10.1111/j.1749-7345.2006.00074.x
  19. Deng, D. F., S. Koshio, S. Yokoyama, S. C. Bai, Q. Shao, Y. Cui, and S. S. O. Hung. 2003. Effects of feeding rate on growth performance of white sturgeon (Acipenser transmontanus) larvae. Aquaculture 217:589-598. https://doi.org/10.1016/S0044-8486(02)00461-1
  20. Hochachka, P. W. and G. N. Somero. 1984. Biochemical adaptation. Princeton University Press, Princeton, New Jersey. p. 525.
  21. Dwyer, K. S., J. A. Brown, C. Parrish, and S. P. Lall. 2002. Feeding frequency affects food consumption, feeding pattern and growth of juvenile yellowtail flounder (Limanda ferruginea). Aquaculture 213:279-292. https://doi.org/10.1016/S0044-8486(02)00224-7
  22. Eroldogan, O. T., M. Kumlu, and M. Aktas. 2004. Optimum feeding rates for European seabass Dicentrarchus labrax L. reared in seawater and freshwater. Aquaculture 231:501-515. https://doi.org/10.1016/j.aquaculture.2003.10.020
  23. Gardeur, J. N., N. Mathis, A. Kobilinsky, and J. Brun-Bellut. 2007. Simultaneous effects of nutritional and environmental factors on growth and flesh quality of Perca fluviatilis using a fractional factorial design study. Aquaculture 273:50-63. https://doi.org/10.1016/j.aquaculture.2007.09.024
  24. Ghaffari, H., A. A. Ardalan, H. H. Sahafi, M. M. Babaei, and R. Abdollahi. 2011. Annual changes in gonadosomatic index (GSI), hepatosomatic index (HSI) and condition factor (K) of Largescale tonguesole Cynoglossus arel in the coastal waters of Bandar Abbas, Persian Gulf. Aus. J. Basic and Appl. Sci. 5:1640-1646.
  25. Huang, X-J., Y-K. Choi, H. S. Im, O. Yarimaga, E. Yoon, and H-S. Kim. 2006. Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6:756-782. https://doi.org/10.3390/s6070756
  26. Hung, S. S. O., P. B. Lutes, A. A. Shqueir, and F. S. Conte. 1993. Effect of feeding rate and water temperature on growth of juvenile white sturgeon (Acipenser transmontanus). Aquaculture 115:297-303. https://doi.org/10.1016/0044-8486(93)90144-N
  27. Kestemont, P. and E. Barras. 2001. Environmental factors and feed intake: mechanisms and interactions. In: Food Intake in Fish (Ed. D. Houlihan, T. Boujard, and M. Jobling). Blackwell Scientific Publications Ltds, Oxford. pp. 131- 156.
  28. Bai, S. C. and O. E. Okorie. 2009. Marine fish. Korean Rockfish (Sebastes schlegeli) Production in Korea. Global Aquaculture Advocate. pp. 41-42.
  29. Abdelghany, A. E. and M. H. Ahmad. 2002. Effects of feeding rates on growth and production of Nile tilapia (Oreochromis niloticus), common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) polycultured in fertilized ponds. Aquac. Res. 33:415-423. https://doi.org/10.1046/j.1365-2109.2002.00689.x
  30. AOAC. 1995. Official Methods of Analysis. 16th edn. Association of Official Analytical Chemists, Arlington, Virginia.
  31. Azaza, M. S., M. S. Dhraief, and M. M. Kraiem. 2008. Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. J. Therm. Biol. 33:98-105. https://doi.org/10.1016/j.jtherbio.2007.05.007
  32. Bai, S. C., S. M. Choi, K. W. Kim, and X. J. Wang. 2001. Apparent protein and phosphorus digestibilities of five different dietary protein sources in Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquac. Res. 32:99-105. https://doi.org/10.1046/j.1355-557x.2001.00009.x
  33. Bailey, J. and A. Alanara. 2006. Effect of feed portion size on growth of rainbow trout, Oncorhynchus mykiss (Walbaum) reared at different temperatures. Aquaculture 253:728-730. https://doi.org/10.1016/j.aquaculture.2005.09.026
  34. Brown, B. A. 1980. Routine hematology procedures. In: Hematology, Principles and Procedures (Ed. Lea and Febiger). Lea and Febiger Co. Philadelphia, PA. pp. 71-112.
  35. Bjornsson, B., A. Steinarsson, and T. Arnason. 2007. Growth model for Atlantic cod (Gadus morhua): Effects of temperature and body weight on growth rate. Aquaculture 27:216-226.
  36. Velmurugan, B., M. Selvanayagam, E. I. Cengiz, and E. Unlu. 2007. The effects of fenvalerate on different tissues of freshwater fish Cirrhinus mrigala. J. Environ. Sci. Health B. 42:157-163. https://doi.org/10.1080/03601230601123292
  37. Wang, Y., J. Guo, K. Li, and D. P. Bureau. 2006. Effects of dietary protein and energy levels on growth, feed utilization and body composition of cuneate drum (Nibea miichthioides). Aquaculture 252:421-428. https://doi.org/10.1016/j.aquaculture.2005.06.051
  38. Van Ham, E. H., M. H. G. Berntssen, A. K. Imsland, A. C. Parpoura, B. S. E. Wenderlaar, and S. O. Stefansson. 2003. The influence of temperature and ration on growth, feed conversion, body composition and nutrition retention of juvenile turbot (Scohthalmus maximus). Aquaculture 217:547-558. https://doi.org/10.1016/S0044-8486(02)00411-8
  39. Wang, Y., L. J. Kong, K. Li, and D. P. Bureau. 2007. Effects of feeding frequency and ration level on growth, feed utilization and nitrogen waste output of cuneate drum (Nibea miichthioides) reared in net pens. Aquaculture 271:350-356. https://doi.org/10.1016/j.aquaculture.2007.03.022
  40. Wang, N., X. Xu, and P. Kestemont. 2009. Effect of temperature and feeding frequency on growth performances, feed efficiency and body composition of pikeperch juveniles (Sander lucioperca). Aquaculture 289:70-73. https://doi.org/10.1016/j.aquaculture.2009.01.002
  41. Xia, J. and X. Li. 2010. Effect of temperature on blood parameters of the salamander Batrachupems tibetanus (Schmidt, 1925) (Amphibia: Hynobiidae). Russian J. Ecol. 41:102-106. https://doi.org/10.1134/S1067413610010194

Cited by

  1. A Review of the Optimum Feeding Rates and Feeding Frequency in Korean Rockfish Sebastes schlegeli Reared at Seven Different Water Temperatures vol.17, pp.2, 2014, https://doi.org/10.5657/FAS.2014.0229
  2. The Optimum Feeding Frequency in Growing Korean Rockfish (Sebastes schlegeli) Rearing at the Temperature of 15°C and 19°C vol.27, pp.9, 2014, https://doi.org/10.5713/ajas.2014.14193
  3. Effect of Dietary Inclusion of Yacon, Ginger and Blueberry on Growth, Feed Utilization, Serum Chemistry and Challenge Test against Streptococcus iniae of Juvenile Rockfish Sebastes schlegeli vol.49, pp.6, 2016, https://doi.org/10.5657/KFAS.2016.0823
  4. The effects of water temperature on growth performance and hematology of Pacific cod Gadus macrocephalus reared in land-based culture tanks vol.82, pp.6, 2016, https://doi.org/10.1007/s12562-016-1020-x
  5. vol.23, pp.6, 2017, https://doi.org/10.1111/anu.12521
  6. pp.13535773, 2017, https://doi.org/10.1111/anu.12643
  7. Epigenetics in aquaculture - the last frontier pp.17535123, 2017, https://doi.org/10.1111/raq.12219
  8. Zoochorous dispersal of freshwater bivalves: an overlooked vector in biological invasions? pp.418, 2017, https://doi.org/10.1051/kmae/2017037
  9. Feeding Frequency and Rate Effects on Growth and Physiology of Juvenile Genetically Improved Farmed Nile Tilapia vol.77, pp.4, 2015, https://doi.org/10.1080/15222055.2015.1066472
  10. (Girard, 1852) vol.50, pp.3, 2019, https://doi.org/10.1111/are.13968