Naturally Occurring Lactic Acid Bacteria Isolated from Tomato Pomace Silage

  • Wu, Jing-Jing (College of Life Science, Inner Mongolia University) ;
  • Du, Rui-Ping (Animal Nutrition Institute of Agriculture and Animal Husbandry Academy of Inner Mongolia) ;
  • Gao, Min (Animal Nutrition Institute of Agriculture and Animal Husbandry Academy of Inner Mongolia) ;
  • Sui, Yao-Qiang (College of Life Science, Inner Mongolia University) ;
  • Xiu, Lei (College of Life Science, Inner Mongolia University) ;
  • Wang, Xiao (College of Life Science, Inner Mongolia University)
  • Received : 2013.10.21
  • Accepted : 2014.01.12
  • Published : 2014.05.01


Silage making has become a significant method of forage conservation worldwide. To determine how tomato pomace (TP) may be used effectively as animal feed, it was ensilaged for 90 days and microbiology counts, fermentation characteristics and chemical composition of tomato pomace silage (TPS) were evaluated at the 30th, 60th, and 90th days, respectively. In addition, 103 lactic acid bacteria were isolated from TPS. Based on the phenotypic and chemotaxonomic characteristics, 16S rDNA sequence and carbohydrate fermentation tests, the isolates were identified as 17 species namely: Lactobacillus coryniformis subsp. torquens (0.97%), Lactobacillus pontis (0.97%), Lactobacillus hilgardii (0.97%), Lactobacillus pantheris (0.97%), Lactobacillus amylovorus (1.9%), Lactobacillus panis (1.9%), Lactobacillus vaginalis (1.9%), Lactobacillus rapi (1.9%), Lactobacillus buchneri (2.9%), Lactobacillus parafarraginis (2.9%), Lactobacillus helveticus (3.9%), Lactobacillus camelliae (3.9%), Lactobacillus fermentum (5.8%), Lactobacillus manihotivorans (6.8%), Lactobacillus plantarum (10.7%), Lactobacillus harbinensis (16.5%) and Lactobacillus paracasei subsp. paracasei (35.0%). This study has shown that TP can be well preserved for 90 days by ensilaging and that TPS is not only rich in essential nutrients, but that physiological and biochemical properties of the isolates could provide a platform for future design of lactic acid bacteria (LAB) inoculants aimed at improving the fermentation quality of silage.


  1. AOAC. 2000. Official Methods of Analysis. 17th edn. Association of Official Analytical Chemists, Gaithersburg, Maryland.
  2. Abdollahzadehi, F., R. Pirmohammadi, F. Fatehi, and I. Bernousii. 2010. Effect of feeding ensiled mixed tomato and apple pomace on performance of Holstein dairy cows. J. Anim. Sci. 43:31-35.
  3. Belibasakis, N. G. and P. Ambatzidiz. 1995. The effect of ensiled wet tomato pomace on milk production, milk composition and blood components of dairy cows. Anim. Feed. Sci. Tech. 60:399-402.
  4. Curk, M. C., J. C. Hubert, and F. C. Bringel. 1996. Lactobacillus paraplantarum sp. nov., a new species related to Lactobacillus plantarum. Int. J. Syst. Bacteriol. 46:595-598.
  5. Cai, Y., S. Ohmomo, M. Ogawa, and S. Kumai. 1997. Effect of NaCl-tolerant lactic acid bacteria and NaCl on the fermentation characteristics and aerobic stability of silage. J. Appl. Microbiol. 83:307-313.
  6. Cai, Y., Y. Benno, M. Ogawa, S. Ohmomo, S. Kumai, and K. Nakase. 1998. Influence of Lactobacillus spp. from an inoculants and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microbiol. 64:2982-2987.
  7. Cai, Y. 1999a. Identification and characterization of Enterococcus species isolated from forage crops and their influence on silage fermentation. J. Dairy. Sci. 82:2466-2471.
  8. Cai, Y., S. Kumai, M. Ogawa, Y. Benno, and T. Nakase. 1999b. Characterization and identification of Pediococcus species isolated from forage crops and their application for silage preparation. Appl. Environ. Microbiol. 65:2901-2906.
  9. Cai, Y., Y. Benno, M. Ogawa, and S. Kumai. 1999c. Effect of applying lactic acid bacteria isolated from forage crops on fermentation charactaristics and aerobic deterioration of silage. J. Dairy Sci. 82:520-526.
  10. Cai, Y., H. Okada, H. Mori, Y. Benno, and T. Nakase. 1999d. Lactobacillus paraalimentarius sp. nov. isolated from sourdough. Int. J. Syst. Bacteriol. 49:1451-1455.
  11. Cai, Y., P. Suyanandana, P. Saman, and Y. Benno. 1999e. Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns. J. Gen. Appl. Microbiol. 45:177-184.
  12. Council for Science and Technology. 2005. Standard Tables of Food Composition in Japan. 5th ed. M. o. E., Culture, Sports, Science and Technology, Japan. National Printing Bureau, Tokyo, Japan.
  13. Camu, N., T. De. Winter, K. Verbrugghe, I. Cleenwerck, P. Vandamme, J. S. Takarama, M. Vancanneyt, and L. De Vuyst. 2007. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl. Environ. Microbiol. 73:1809-1824.
  14. Del Valle, M., M. Camara, and M. E. Torija. 2006. Chemical characterization of tomato pomace. J. Sci. Food Agric. 86:1232-1236.
  15. Denek, N. and A. Can. 2006. Feeding value of wet tomato pomace ensiled with wheat straw and wheat grain for Awassi sheep. Small. Rumin. Res. 65:260-265.
  16. Duan, Y., Z. Tan, Y. Wang, Z. Li, G. Qin, Y. Huo, and Y. Cai, 2008. Identification and characterization of lactic acid bacteria isolated from Tibetan Qula cheese. J. Gen. Appl. Microbiol. 54:51-60.
  17. Ennahar, S., Y. Cai, and Y. Fujita. 2003. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Appl. Environ. Microbiol. 69:444-451.
  18. Eitan, B. D., O. H. Shapiro, N. Siboni, and A. Kushmaro. 2006. Advantage of using inosine at the 3' termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl. Environ. Microbiol. 72:6902-6906.
  19. Fenlon, D. R., D. N. Logue, J. Gunn, and J. Wilson. 1995. A study of mastitis bacteria and herd management practices to identify their relationship to high somatic cell counts in bulk tank milk. Brit. Vet. J. 151:17-25.
  20. Li, Y. and N. Nishino. 2011. Bacterial and fungal communities of wilted Italian ryegrass silage inoculated with and without Lactobacillus rhamnosus or Lactobacillus buchneri. Lett. Appl. Microbiol. 52:314-321.
  21. McAllister, T. A. and A. N. Hristov. 2002. Effect of inoculants on whole-crop barley silage fermentation and dry matter disappearance in situ. J. Anim. Sci. 80:510-516.
  22. Meroth, C. B., J. Walter, C. Hertel, M. J. Brandt, and W. P. Hammes. 2003. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturation gradient gel electrophoresis. Appl. Environ. Microbiol. 69:475-482.
  23. Nemat Ziaei and Sadrollah Molaei. 2010. Evaluation of nutrient digestibility of wet tomato pomace ensiled with whest straw compared to alfalfa hay in kermani sheep. J. Anim. Vet. Adv. 9:771-773.
  24. Parvin, S., C. Wang, Y. Li, and N. Nishino. 2010. Effects of inoculation with lactic acid bacteria on the bacterial communities of Italian ryegrass, whole crop maize, guinea grass and rhodes grass silages. Anim. Feed Sci. Technol. 160:160-166.
  25. Pang, H., G. Qin, Z. Tan, Z. Li, Y. Wang, and Y. Cai. 2011. Natural populations of lactic acid bacteria associated with silage fermentation as determined by phenotype, 16S ribosomal RNA and recA gene analysis. Syst. Appl. Microbiol. 34:235-241.
  26. Pang, H., Z. Tan, G. Qin, Y. Wang, Z. Li, Q. Jin, and Y. Cai. 2012. Phenotypic and phylogenetic analysis of lactic acid bacteria isolated from forage crops and grasses in the Tibetan Plateau. J. Microbiol. 50:63-71.
  27. Rodhe, H. 1990. A comparison of the contribution of various gases to the greenhouse effect. Science 248(4960):1217-1219.
  28. Tanaka, O. and S. Ohmomo. 1994. A repeatable model system for silage fermentation in culture tubes. Biosci. Biotechnol. Biochem. 58:1407-1411.
  29. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22:4673-4680.
  30. Torriani, S., G. E. Felis, and F. Dellaglio. 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 67: 3450-3454.
  31. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.
  32. Tabacco, E., S. Piano, A. Revello-Chion, and G. Borreani. 2011. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions. J. Dairy Sci. 94:5589-5598.
  33. Van Soest, P. J., J. B. Robertson, and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber andnon-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.
  34. Weiss, W. P., D. L. Frobose, and M. E. Koch. 1997. Wet tomato pomace ensiled with corn plants for dairy cows. J. Dairy. Sci. 80:2896-2900.
  35. Winters, A. L., J. E. Cockburn, M. S. Dhanoa, and R. J. Merry. 2000. Effects of lactic acid bacteria in inoculants on changes in amino acid composition during ensilage of sterile and nonsterile ryegrass. J. Appl. Microbiol. 89:442-452.
  36. Weinberg, Z. G., R. E. Muck, P. J. Weimer, Y. Chen, and M. Gramburg. 2004. Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Appl. Biochem. Biotechnol. 118:1-9.
  37. Wang, C., H. Han, X. Gu, Z. Yu, and N. Nishino. 2014. A survey of fermentation products and bacterial communities in corn silage produced in a bunker silo in China. J. Anim. Sci. 85:32-36.
  38. Xu, C. C., Y. Cai, J. Zhang, and M. Ogawa. 2007. Fermentation quality and nutritive value of total mixed ration silage containing coffee grounds at ten or twenty percent of dry matter. J. Anim. Sci. 85:1024-1029.
  39. Zheng, Y., M. Yates, H. Aung, Y. S. Cheng, C. Yu, H. Guo, R. Zhang, J. Vandergheynst, and B. M. Jenkins. 2011a. Influence of moisture content on microbial activity and silage quality during ensilage of food processing residues. Bioprocess Biosyst. Eng. 34:987-995.
  40. Zheng, Y., C. W. Yu, Y. S. Cheng, R. H. Zhang, J. Bryan, S. Jean, and G. Vander. 2011b. Effects of ensilage on storage and enzymatic degradability of sugar beet pulp. Bioresour. Technol. 102:1489-1495.

Cited by

  1. Effect of Novel Lactobacillus plantarum KCC-10 and KCC-19 on Fermentation Characterization of Alfalfa Silage vol.35, pp.2, 2015,
  2. Effect of Addition of Lactic Acid Bacteria on Fermentation Quality of Rye Silage vol.35, pp.4, 2015,
  3. Temporal and spatial assessment of microbial communities in commercial silages from bunker silos vol.100, pp.15, 2016,
  4. Effect of temperature (5-25°C) on epiphytic lactic acid bacteria populations and fermentation of whole-plant corn silage vol.121, pp.3, 2016,
  5. Potential effects of Novel Lactic Acid Bacteria on Fermentation Quality of Rye Haylage vol.36, pp.1, 2016,
  6. Characterization of Exopolysaccharides Produced by Thermophilic Lactic Acid Bacteria Isolated from Tropical Fruits of Thailand vol.40, pp.5, 2017,