The diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1

  • Harikrishna, Reddy R. ;
  • Kim, Hackyoung ;
  • Noh, Kwangmo ;
  • Kim, Young Jun
  • Received : 2014.03.07
  • Published : 2014.04.30


RNA polymerase II carboxyl-terminal domain (pol II CTD) phosphatases are a newly emerging family of phosphatases that are members of DXDX (T/V). The subfamily includes Small CTD phosphatases, like SCP1, SCP2, SCP3, TIMM50, HSPC129 and UBLCP. Extensive study of SCP1 has elicited the diversified roles of the small C terminal domain phosphatase. The SCP1 plays a vital role in various biological activities, like neuronal gene silencing and preferential Ser5 dephosphorylation, acts as a cardiac hypertrophy inducer with the help of its intronic miRNAs, and has shown a key role in cell cycle regulation. This short review offers an explanation of the mechanism of action of small CTD phosphatases, in different biological activities and metabolic processes.


Cardiac hypertrophy;Cell cycle regulation;Neuronal;gene silencing;SCP1;Small CTD phosphatases


  1. Rossi, D. J., Londesborough, A., Korsisaari, N., Pihlak, A., Lehtonen, E., Henkemeyer, M. and Makela, T. P. (2001) Inability to enter S phase and defective RNA polymerase II CTD phosphorylation in mice lacking Mat1. EMBO J. 20, 2844-2856.
  2. Lawinger, P., Venugopal, R., Guo, Z. S., Immaneni, A., Sengupta, D., Lu, W. Y., Rastelli, L., Carneiro, A. M. D., Levin, V., Fuller, G. N., Echelard, Y. and Majumder, S. (2000) The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nat. Med. 6, 1062-1062.
  3. Patturajan, M., Conrad, N. K., Bregman, D. B. and Corden, J. L. (1999) Yeast carboxyl-terminal domain kinase I positively and negatively regulates RNA polymerase II carboxyl-terminal domain phosphorylation. J. Biol. Chem. 274, 27823-27828.
  4. Keogh, M. C., Podolny, V. and Buratowski, S. (2003) Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol. Cell. Biol. 23, 7005-7018.
  5. Zhang, M. M., Liu, J., Kim, Y., Dixon, J. E., Pfaff, S. L., Gill, G. N., Noel, J. P. and Zhang, Y. (2010) Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1. Protein Sci. 19, 974-986.
  6. Hussnain, S. A., Gulack, B. C. and Fox, K. M. (2008) Cloning and expression of Scp1, a yeast metacaspase homologue, from Schizophyllum commune. FASEB J. 22. (March 2008 Meeting Abstract Supplement), 1003.11
  7. Jasnovidova, O. and Stefl, R. (2013) The CTD code of RNA polymerase II: a structural view. Wiley Interdisciplinary Reviews-Rna 4, 1-16.
  8. Ghosh, A., Shuman, S. and Lima, C. D. (2011) Structural insights to how mammalian capping enzyme reads the CTD code. Mol. Cell 43, 299-310.
  9. Jones, J. C., Phatnani, H. P., Haystead, T. A., MacDonald, J. A., Alam, S. M. and Greenleaf, A. L. (2004) C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase IIC-terminal domain repeats. J. Biol. Chem. 279, 24957-24964.
  10. Akhtar, M. S., Heidemann, M., Tietjen, J. R., Zhang, D. W., Chapman, R. D., Eick, D. and Ansari, A. Z. (2009) TFIIH Kinase Places Bivalent Marks on the Carboxy-Terminal Domain of RNA Polymerase II. Mol. Cell 34, 387-393.
  11. Hirose, Y. and Ohkuma, Y. (2007) Phosphorylation of the c-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J. Biochem. (Tokyo) 141, 601-608.
  12. Feng, Y., Kang, J. S., Kim, S., Yun, D. J., Lee, S. Y., Bahk, J. D. and Koiwa, H. (2010) Arabidopsis SCP1-like small phosphatases differentially dephosphorylate RNA polymerase II C-terminal domain. Biochem. Biophys. Res. Commun. 397, 355-360.
  13. Jones, F. S. and Meech, R. (1999) Knockout of REST NRSF shows that the protein is a potent repressor of neuronally expressed genes in non-neural tissues. Bioessays 21, 372-376.<372::AID-BIES3>3.0.CO;2-3
  14. Shimojo, M. and Hersh, L. B. (2004) Regulation of the cholinergic gene locus by the repressor element-1 silencing transcription factor/neuron restrictive silencer factor (REST/NRSF). Life Sci. 74, 2213-2225.
  15. Su, X. H., Kameoka, S., Lentz, S. and Majumder, S. (2004) Activation of REST/NRSF target genes in neural stem cells is sufficient to cause neuronal differentiation. Mol. Cell. Biol. 24, 8018-8025.
  16. Pinnoji, R. C., Bedadala, G. R., George, B., Holland, T. C., Hill, J. M. and Hsia, S. C. V. (2007) Repressor element-1 silencing transcription factor/neuronal restrictive silencer factor (REST/NRSF) can regulate HSV-1 immediate-early transcription via histone modification. Virology J. 4, 56.
  17. Ivaldi, M. S., Karam, C. S. and Corces, V. G. (2007) Phosphorylation of histone H3 at Ser10 facilitates RNA polymerase II release from promoter-proximal pausing in Drosophila. Genes Dev. 21, 2818-2831.
  18. Yeo, M., Lee, S. K., Lee, B., Ruiz, E. C., Pfaff, S. L. and Gill, G. N. (2005) Small CTD phosphatases function in silencing neuronal gene expression. Science 307, 596-600.
  19. Rodova, M., Gardner, B. M., Lu, Q., Yost, J. G. and Wang, J. (2008) Runx2 and canonical wnt signaling cooperatively regulate BMP-induced differentiation pathways of adult dural cells into osteoblasts or chondrocytes. J. Bone Miner. Res. 23, S384-S384.
  20. Attisano, L., Silvestri, C., Izzi, L. and Labbe, E. (2001) The transcriptional role of Smads and FAST (FoxH1) in TGF beta and activin signalling. Mol. Cell. Endocrinol. 180, 3-11.
  21. Yano, M., Inoue, Y., Tobimatsu, T., Hendy, G. N., Canaff, L., Sugimoto, T., Seino, S. and Kaji, H. (2012) Smad7 inhibits differentiation and mineralization of mouse osteoblastic cells. Endocr. J. 59, 653-662.
  22. Miller, R. H., Dinsio, K., Wang, R., Geertman, R., Maier, C. E. and Hall, A. K. (2004) Patterning of spinal cord oligodendrocyte development by dorsally derived BMP4. J. Neurosci. Res. 76, 9-19.
  23. Fuentealba, L., Eivers, E. and De Robertis, E. M. (2005) Neural induction: Smad at the intersection of BMP, FGF and Wnt signaling. Mech. Dev. 122, S167-S167.
  24. Korchynskyi, O., Dechering, K. J., Sijbers, A. M., Olijve, W. and ten Dijke, P. (2003) Gene array analysis of bone morphogenetic protein type I receptor-induced osteoblast differentiation. J. Bone Miner. Res. 18, 1177-1185.
  25. Kokabu, S., Ohte, S., Sasanuma, H., Shin, M., Yoneyama, K., Murata, E., Kanomata, K., Nojima, J., Ono, Y., Yoda, T., Fukuda, T. and Katagiri, T. (2011) Suppression of BMP-smad signaling axis-induced osteoblastic differentiation by small C-terminal domain phosphatase 1, a smad phosphatase. Mol. Endocrinol. 25, 474-481.
  26. Wrighton, K. H., Willis, D., Long, J. Y., Liu, F., Lin, X. and Feng, X. H. (2006) Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. J. Biol. Chem. 281, 38365-38375.
  27. Knockaert, M., Sapkota, G., Alarcon, C., Massague, J. and Brivanlou, A. H. (2006) Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling. Proc. Natl. Acad. Sci. U. S. A. 103, 11940-11945.
  28. Leeper, N. J., Raiesdana, A., Kojima, Y., Chun, H. J., Azuma, J., Maegdefessel, L., Kundu, R. K., Quertermous, T., Tsao, P. S. and Spin, J. M. (2011) MicroRNA-26a Is a Novel Regulator of Vascular Smooth Muscle Cell Function. J. Cell. Physiol. 226, 1035-1043.
  29. Decker, R. S., Rines, A. K., Nakamura, S., Naik, T. J., Wassertsrom, J. A. and Ardehali, H. (2010) Phosphorylation of contractile proteins in response to alpha- and beta-adrenergic stimulation in neonatal cardiomyocytes. Transl. Res. 155, 27-34.
  30. Fabian-Marwedel, T., Umeda, M. and Sauter, M. (2002) The rice cyclin-dependent kinase-activating kinase R2 regulates S-phase progression. Plant Cell 14, 197-210.
  31. Li, R. T., Yan, G. J., Zhang, Q., Jiang, Y., Sun, H. X., Hu, Y. L., Sun, J. X. and Xu, B. (2013) miR-145 inhibits isoproterenol-induced cardiomyocyte hypertrophy by targeting the expression and localization of GATA6. FEBS Lett. 587, 1754-1761.
  32. Sowa, N., Horie, T., Kuwabara, Y., Baba, O., Watanabe, S., Nishi, H., Kinoshita, M., Takanabe-Mori, R., Wada, H., Shimatsu, A., Hasegawa, K., Kimura, T. and Ono, K. (2012) MicroRNA 26b encoded by the intron of small CTD phosphatase (SCP) 1 has an antagonistic effect on its host gene. J. Cell. Biochem. 113, 3455-3465.
  33. Voet, T., Liebe, B., Labaere, C., Marynen, P. and Scherthan, H. (2003) Telomere-independent homologue pairing and checkpoint escape of accessory ring chromosomes in male mouse meiosis. J. Cell Biol. 162, 795-807.
  34. Palancade, B. and Bensaude, O. (2003) Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur. J. Biochem. 270, 3859-3870.
  35. Oelgeschlager, T. (2002) Regulation of RNA polymerase II activity by CTD phosphorylation and cell cycle control. J. Cell. Physiol. 190, 160-169.
  36. Guo, Z. and Stiller, J. W. (2004) Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs. BMC Genomics 5, 69.
  37. Zhang, Y., Kim, Y., Genoud, N., Gao, J., Kelly, J. W., Pfaff, S. L., Gill, G. N., Dixon, J. E. and Noel, J. P. (2006) Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol. Cell 24, 759-770.

Cited by

  1. A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners vol.448, pp.2, 2014,
  2. In vivo putative O-GlcNAcylation of human SCP1 and evidence for possible role of its N-terminal disordered structure vol.47, pp.10, 2014,
  3. A systematic study of nuclear interactome of C-terminal domain small phosphatase-like 2 using inducible expression system and shotgun proteomics vol.49, pp.6, 2016,
  4. C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation vol.111, pp.37, 2014,
  5. Selective Dephosphorylation by SCP1 and PP2A in Phosphorylated Residues of SMAD2 vol.35, pp.11, 2014,
  6. Identification of Undifferentiated Embryonic Cell Transcription Factor 1 as a Potential Substrate of Carboxyl-Terminal Domain Small Phosphatases vol.59, pp.2, 2015,
  7. Comprehensive network of miRNA-induced intergenic interactions and a biological role of its core in cancer vol.8, pp.1, 2018,


Supported by : Konkuk University