DOI QR코드

DOI QR Code

Computational Study on Spirocyclic Compounds as Energetic Materials (I)

  • Seok, Won K.
  • Received : 2013.09.23
  • Accepted : 2013.11.17
  • Published : 2014.04.20

Abstract

The molecular structures of 2,6-diaza-1,3,5,7-tetraoxaspiro[3,3]heptane (1) and its dinitro derivative, 2,6-dinitro-2,6-diaza-1,3,5,7-tetraoxaspiro[3,3]heptane (2), were fully optimized without symmetry constraints at $HF/6-31G^*$ level of theory. A bisected conformation with respect to the ring is preferred with a $C_2$ symmetric structure. The density of each molecule in the crystalline state was estimated to 1.12 and 2.36 $g/cm^3$ using PM3/VSTO-3G calculations from the molecular volume. The heat of formation was calculated for two compounds at the CBS-4M level of theory. The detonation parameters were computed using the EXPLO5 software: D = 6282 m/s, $P_{C-J}$ = 127 kbar for compound 1, D = 7871 m/s, $P_{C-J}$ = 307 kbar for compound 2, and D = 6975 m/s, $P_{C-J}$ = 170 kbar for 60% compound 2 with 40% TNT. Specific impulse of compound 1 in aluminized formulation when used as monopropellants was very similar to that of the conventional ammonium perchlorate in the same formulation of aluminum.

Keywords

Strained-ring;Oxoaza compounds;High-performing energetic materials

References

  1. (a) Murray, M. J.; Stevenson, E. H. J. Am. Chem. Soc. 1944, 66, 812. https://doi.org/10.1021/ja01233a047
  2. Rice, B. M.; Byrd, E. F. C.; Mattson, W. D. Computational Aspects of Nitrogen-Rich HEDMs. In High Energy Density Materials; Klapotke, T. M., Ed.; Structure and Bonding 125; Springer: Berlin, 2007; pp 153-104.
  3. (a) Srinivas, D.; Ghule, V. D.; Muralidharan, K.; Jenkins, H. D. B. Chem. Asian J. 2013, 8, 1023. https://doi.org/10.1002/asia.201300033
  4. (b) Fischer, N.; Izsak, D.; Klapotke, T. M.; Stierstorfer, J. Chem. Eur. J. 2013, 19, 8948. https://doi.org/10.1002/chem.201300691
  5. (b) Wade, P. A.; Kondracki, P. A.; Carroll, P. J. J. Am. Chem. Soc. 1991, 113, 8807. https://doi.org/10.1021/ja00023a031
  6. (c) Volkova, Y. A.; Ivanova, O. A.; Budynina, E. M.; Revunov, E. V.; Averina, E. B. Tetrahedron Lett. 2009, 50, 2793. https://doi.org/10.1016/j.tetlet.2009.03.165
  7. Bumpus, J. A. Advances in Physical Chemistry 2012, 2012, 175146.
  8. Mondal, T.; Sarutha, B.; Ghanta, S.; Roy, T. K.; Mahapatra, S.; Prasad, M. D. J. Mol. Struct.-Theochem 2009, 897, 42. https://doi.org/10.1016/j.theochem.2008.11.013
  9. Fischer, N.; Izsak, D.; Klapotke, T. M.; Rappengluck, S.; Stierstorfer, Jorg. Chem. Eur. J. 2013, 18, 4051.
  10. Greenwood, N. N.; Earnshow, A. Chemistry of the Elements; Pergamon Press: Oxford, 1984.
  11. Ball, D. W. J. Mol. Struct.-Theochem 2006, 773, 1. https://doi.org/10.1016/j.theochem.2006.06.038
  12. Ditchfield, R. Mol. Phys. 1974, 27, 789. https://doi.org/10.1080/00268977400100711
  13. Frish, J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision A.1; Gaussian, Inc.: Pittsburgh PA, 2003.
  14. Wolinski, K.; Hilton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251. https://doi.org/10.1021/ja00179a005
  15. Dodds, J. L.; McWeeny, R.; Sadlej, A. J. J. Mol. Phys. 1980, 41, 1419. https://doi.org/10.1080/00268978000103631
  16. McWeeny, R. Phys. Rev. 1962, 126, 1028. https://doi.org/10.1103/PhysRev.126.1028
  17. Ochterski, W. D.; Petersson, Jr. G. A.; Montgomery, J. A. J. Chem. Phys. 1996, 104, 2598. https://doi.org/10.1063/1.470985
  18. Montgomery, J.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 2000, 112, 6532. https://doi.org/10.1063/1.481224
  19. Klapotke, T. M.; Ang, H.-G. Propellants, Explos., Pyrotech. 2001, 26, 221. https://doi.org/10.1002/1521-4087(200112)26:5<221::AID-PREP221>3.0.CO;2-T
  20. Suceska, M. EXPLO5 Program: Zagreb, Croatia, 2010.
  21. Suceska, M. Materials Science Forum 2004, 325, 465.
  22. (a) Metz, C. R.; Knight, J. D.; Dawsey, A. C.; Pennington, W. T.; VanDerveer, D. G.; Brown, J. B.; Bigham, K. J.; Beam, C. F.. J. Chem. Crystallogr. 2010, 40, 296. https://doi.org/10.1007/s10870-009-9649-2
  23. (a) Suceska, M. Propellants, Explos., Pyrotech. 1991, 16, 197. https://doi.org/10.1002/prep.19910160409
  24. (b) Suceska, M. Propellants, Explos., Pyrotech. 1999, 24, 280. https://doi.org/10.1002/(SICI)1521-4087(199910)24:5<280::AID-PREP280>3.0.CO;2-W
  25. Hobbs, M. L.; Baer, M. R. Symp. (International) on Detonation, ONR 33395-12, Boston, MA; July, 1993; p 409.
  26. (b) Carta, M.; Helliwell, M.; Mckeown, N. B. J. Chem. Crystallogr. 2012, 42, 111. https://doi.org/10.1007/s10870-011-0211-7
  27. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063. https://doi.org/10.1063/1.473182
  28. Byrd, E. F. C.; Rice, B. M. J. Phys. Chem. A 2006, 110, 1005. https://doi.org/10.1021/jp0536192
  29. Rice, B. M.; Pai, Sh. V.; Hare, J. Combustion and Flame 1999, 118, 445. https://doi.org/10.1016/S0010-2180(99)00008-5
  30. (a) CAS Registry Number 278173-97-0.
  31. (b) Choi, K.-S.; Kim, H.-Y.; Kim, S. J. Bull. Korean Chem. Soc. 2005, 26, 119. https://doi.org/10.5012/bkcs.2005.26.1.119
  32. Westwell, M. S.; Searle, M. S.; Wales, D. J.; Williams, D. H. J. Am. Chem. Soc. 1995, 117, 5013. https://doi.org/10.1021/ja00123a001
  33. Kohler, J.; Meyer, R. Explosivstoffe, 9th ed.; Wiley-VCH: Weinheim, 1998.
  34. Klapotke, T. M.; Seok, W. K. Bull. Korean Chem. Soc. 2013, 34, 3189. https://doi.org/10.5012/bkcs.2013.34.11.3189
  35. Wagner, R. R.; Ball, D. W. J. Undegrad. Chem. Res. 2011, 10, 134.
  36. Klapotke, T. M. Chemistry of High-Energy Materials, 2nd ed.; de Gruyter: Berlin, New York, 2011.
  37. Gokcinar, E.; Klapotke, T. M.; Kramer, M. P. J. Phys. Chem. A 2010, 114, 8680.

Cited by

  1. Strained-Ring Compounds Containing Nitro Groups as Potential Explosive Materials vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10927