Polyopes lancifolia Extract, a Potent α-Glucosidase Inhibitor, Alleviates Postprandial Hyperglycemia in Diabetic Mice

  • Min, Seong Won (Department of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2014.01.10
  • Accepted : 2014.03.17
  • Published : 2014.03.31


This study was designed to investigate the inhibitory effects of Polyopes lancifolia extract (PLE) on ${\alpha}$-glucosidase activity, ${\alpha}$-amylase activitiy, and postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. The results of this study revealed a marked inhibitory effect of PLE on ${\alpha}$-glucosidase and ${\alpha}$-amylase activities. The $IC_{50}s$ of PLE against ${\alpha}$-glucosidase and ${\alpha}$-amylase were 0.20 mg/mL and 0.35 mg/mL, respectively. PLE was a more effective inhibitor of ${\alpha}$-glucosidase and ${\alpha}$-amylase activities than acarbose, the positive control. The postprandial blood glucose levels of STZ-induced diabetic mice were significantly lower in the PLE treated group than in the control group. Moreover, PLE administration was associated with a decreased area under the curve for the glucose response in diabetic mice. These results indicate that PLE may be a potent inhibitor of ${\alpha}$-glucosidase and ${\alpha}$-amylase activities and may suppress postprandial hyperglycemia.


Supported by : National Research Foundation of Korea (NRF)


  1. Kim JS. 2004. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. J Korean Soc Food Sci Nutr 33: 1133-1138.
  2. Koivisto VA. 1993. Insulin therapy in type II diabetes. Diabetes Care 16: S29-S39.
  3. Ceriello A, Davidson J, Hanefeld M, Leiter L, Monnier L, Owens D, Tajima N, Tuomilehto J; International Prandial Glucose Regulation Study Group. 2006. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis 16: 453-456.
  4. Inoue I, Takahashi K, Noji S, Awata T, Negishi K, Katayama S. 1997. Acarbose controls postprandial hyperproinsulinemia in non-insulin dependent diabetes mellitus. Diabetes Res Clin Pract 36: 143-151.
  5. Watanabe J, Kawabata J, Kurihara H, Niki R. 1997. Isolation and identification of $\alpha$-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci Biotechnol Biochem 61: 177-178.
  6. Li Y, Wen S, Kota BP, Peng G, Li GQ, Yamahara J, Roufogalis BD. 2005. Punica granatum flower extract, a potent $\alpha$-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J Ethnopharmacol 99: 239-244.
  7. Gholamhoseinian A, Fallah H, Sharifi far F. 2009. Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on $\alpha$-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats. Phytomedicine 16: 935-941.
  8. Lebovitz HE. 1998. Postprandial hyperglycaemic state: importance and consequences. Diabetes Res Clin Pract 40: S27-S28.
  9. Krentz AJ, Bailey CJ. 2005. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65: 385-411.
  10. Prashanth D, Padmaja R, Samiulla DS. 2001. Effect of certain plant extracts on {\alpha}$-amylase activity. Fitoterapia 72: 179-181.
  11. Hanefeld M, Schaper F. 2007. The role of alpha-glucosidase inhibitors (acarbose). In Pharmacotherapy of Diabetes: New Developments Improving Life and Prognosis for Diabetic Patients. Mogensen CE, ed. Springer Science, New York, NY, USA. P 143-152.
  12. Hara Y, Honda M. 1990. The inhibition of $\alpha$-amylase by tea polyphenols. Agric Biol Chem 54: 1939-1945.
  13. Stern JL, Hagerman AE, Steinberg PD, Mason PK. 1996. Phlorotannin-protein interactions. J Chem Ecol 22: 1877-1899.
  14. Pierpoint WS. 1969. o-Quinones formed in plant extracts. Their reactions with amino acids and peptides. J Biochem 112:609-616.
  15. Kim KY, Nguyen TH, Kurihara H, Kim SM. 2010. $\alpha$- Glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J Food Sci 75: 145-150.
  16. Fonseca V. 2003. Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus. Curr Med Res Opin 19: 635-641.
  17. Hanefeld M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J Diabetes Complications 12: 228-237.
  18. Mineur F, De Clerck O, Le Roux A, Maggs CA, Verlaque M. 2010. Polyopes lancifolius (Halymeniales, Rhodophyta), a new component of the Japanese marine flora introduced to Europe. Phycologia 49: 86-96.
  19. Kim KY, Nam KA, Kurihara H, Kim SM. 2008. Potent $\alpha$-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69: 2820-2825.
  20. Shibata T, Fujimoto K, Nagayama K, Yamaguchi K, Nakamura T. 2002. Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int J Food Sci Technol 37: 703-709.
  21. Berge JP, Debiton E, Dumay J, Durand P, Barthomeuf C. 2002. In vitro anti-inflammatory and anti-proliferative activity of sulfolipids from the red alga Porphyridium cruentum. J Agric Food Chem 50: 6227-6232.
  22. Reddy BS, Sharma C, Mathews L. 1984. Effect of Japanese seaweed (Laminaria angustata) extracts on the mutagenicity of 7,12-dimethylbenz[a]anthracene, a breast carcinogen, and of 3,2'-dimethyl-4-aminobiphenyl, a colon and breast carcinogen. Mutat Res 127: 113-118.
  23. Min SW, Han JS. 2013. Effect of Polyopes lancifolia extract on oxidative stress in human umbilical vein endothelial cells induced by high glucose. Prev Nutr Food Sci 18: 38-44.
  24. Clissold SP, Edwards C. 1998. Acarbose. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 35: 214-243.
  25. Corry DB, Tuck ML. 2002. Protection from vascular risk in diabetic hypertension. Curr Hypertens Rep 2: 154-159.
  26. Baron AD. 1998. Postprandial hyperglycemia and $\alpha$-glucosidase inhibitors. Diabetes Res Clin Pract 40: S51-S55.
  27. UK Prospective Diabetes Study Group. 1998. Intensive bloodglucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837-853.
  28. Saito N, Sakai H, Suzuki S, Sekihara H, Yajima Y. 1998. Effect of an alpha-glucosidase inhibitor (voglibose), in combination with sulphonylureas, on glycaemic control in type 2 diabetes patients. J Int Med Res 26: 219-232.
  29. Raj Bhandari M, Jong-Anurakkun N, Hong G, Kawabata J. 2008. $\alpha$-Glucosidase and $\alpha$-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem 106: 247-252.
  30. Lebovitz HE. 2002. Treating hyperglycemia in type 2 diabetes: new goals and strategies. Cleve Clin J Med 69: 809-820.
  31. Carroll MF, Gutierrez A, Castro M, Tsewang D, Schade DS. 2003. Targeting postprandial hyperglycemia: a comparative study of insulinotropic agents in type 2 diabetes. J Clin Endocrinol Metab 88: 5248-5254.

Cited by

  1. Anti-diabetic potential of selected Malaysian seaweeds vol.27, pp.5, 2015,
  2. Antioxidant and α-glucosidase inhibitor activities of natural compounds isolated from Quercus gilva Blume leaves vol.5, pp.9, 2015,