DOI QR코드

DOI QR Code

Growth and Resistance Properties of Carbon Nanowall According to the Variation of Reaction Gas

반응가스의 변화에 따른 탄소나노월의 성장 및 저항 특성

  • Kim, Sung Yun (Department of Electrical Engineering, Hanbat National University) ;
  • Lee, Sangjoon (Department of Electrical Engineering, Hanbat National University) ;
  • Choi, Won Seok (Department of Electrical Engineering, Hanbat National University) ;
  • Joung, Yeun-Ho (Department of Electronic and Control Engineering, Hanbat National University) ;
  • Lim, Dong-Gun (Department of Electronic Engineering, Korea National University of Transportation)
  • 김성윤 (국립한밭대학교 전기공학과) ;
  • 이상준 (국립한밭대학교 전기공학과) ;
  • 최원석 (국립한밭대학교 전기공학과) ;
  • 정연호 (국립한밭대학교 전자제어공학과) ;
  • 임동건 (한국교통대학교 전자공학과)
  • Received : 2014.03.10
  • Accepted : 2014.03.24
  • Published : 2014.04.01

Abstract

Graphite electrodes are used for secondary batteries, fuel cells, and super capacitors. Research is underway to increase the reaction area of graphite electrodes. In this study, we have investigated the growth properties of carbon nanowall (CNW) according to the ingredient of gas. Microwave plasma enhanced chemical vapor deposition (MPECVD) system was used to grow CNW on Si substrate with a variety of the reaction gas. The planar and vertical growth conditions of the grown CNWs according to the ingredient of the gas were characterized by a field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The electrical characteristics of CNWs were analyzed using a 4-point probe.

References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. Smalley, Nature, 318, 162 (1985). https://doi.org/10.1038/318162a0
  2. S. Iijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Griforieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  4. Y. H. Wu, P. W. Qioa, T. C. Chong, and Z. X. Shen, Adv. Mater., 14, 64 (2002). https://doi.org/10.1002/1521-4095(20020104)14:1<64::AID-ADMA64>3.0.CO;2-G
  5. J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, Appl. Phys. A, 69, 255 (1999).
  6. C. H. Jin, J. Y. Wang, Q. Chen, and L. M. Peng, J. Phys. Chem., 110, 5423 (2006). https://doi.org/10.1021/jp057240r
  7. A. T. H. Chuang, J. Robertson, B. O. Boskovic, and K. K. K. Koziol, Appl. Phys. Lett., 90, 123107 (2007). https://doi.org/10.1063/1.2715441
  8. J. J. Wang, M. Y. Zhu, R. A. Outlaw, X. Zhao, D. M. Manos, and B. C. Holloway, Appl. Phys. Lett., 85, 1265 (2004). https://doi.org/10.1063/1.1782253