DOI QR코드

DOI QR Code

Analysis of Efficiency of Bacillus subtilis To Treat Bagasse Based Paper and Pulp Industry Wastewater-A Novel Approach

  • Karichappan, Thirugnanasambandham ;
  • Venkatachalam, Sivakumar ;
  • Jeganathan, Prakash Maran
  • Received : 2013.12.06
  • Accepted : 2014.02.19
  • Published : 2014.04.20

Abstract

In this present study, bagasse based pulp and paper industry wastewater was treated under different operating conditions such as initial pH (6-8), temperature ($25-35^{\circ}C$) and contact time (3-7 days) by using Bacillus subtilis. Response surface methodology (RSM) coupled with Box-Behnken response surface design (BBD) was employed to investigate the effect of process variables on the responses such as turbidity, biological oxygen demand (BOD) and chemical oxygen demand (COD) removal. The experimental data were analyzed by Pareto analysis of variance (ANOVA) and the second order polynomial models were developed. Interactive effects of the process variables on the responses were studied using plotting 3D response surface contour graph and the optimum process conditions were found to be: initial pH of 7, temperature of $30^{\circ}C$ and contact time of 5 days. Under these conditions, removal efficiencies of turbidity, BOD and COD were found to be 85%, 93% and 80% respectively which are close agreement with real experiments. These results indicate that the treatment of bagasse based pulp and paper industry wastewater using Bacillus subtilis is an effective and novel technique.

Keywords

Bacillus subtilis;Bagasse wastewater;Box-Behnken design;Modeling;Optimization

References

  1. Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M. J. Hazard. Mater. 2009, 164, 215. https://doi.org/10.1016/j.jhazmat.2008.07.144
  2. Khalid, B.; Melhem, E. S. J. Chem Eng. 2012, 198,201.
  3. Manaswini, B.; Partha, S. J.; Tanaji, T. M.; Ghangrekar, M. M. Bioelectrochemistry 2010, 79, 228. https://doi.org/10.1016/j.bioelechem.2010.06.002
  4. Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. Carbohyd. Polym. 2013, 97, 451. https://doi.org/10.1016/j.carbpol.2013.05.012
  5. Zouboulis, A.; Katsoyiannis, I. Sep. Sci. Tech. 2002, 37,2859. https://doi.org/10.1081/SS-120005470
  6. Lew, B.; Tarre, S.; Belavski, M.; Gree, M. Water Sci. Tech. 2004, 49, 295.
  7. Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Prep. Biochem. Biotech. 2013. DOI:10.1080/10826068.2013.791629. https://doi.org/10.1080/10826068.2013.791629
  8. Aghamohammadi, N.; Aziz, H. A; Isa, M. H.; Zinatizadeh, A. A. Bioresour. Tech. 2007, 98, 3570. https://doi.org/10.1016/j.biortech.2006.11.037
  9. Nordin, M. Y.; Venkatesh, V. C.; Sharif, S.; Elting, S.; Abdullah, A. J. Mater. Process Tech. 2004, 145, 46. https://doi.org/10.1016/S0924-0136(03)00861-6
  10. Sridhar, R.; Sivakumar, V.; Prince Immanuel, V.; Prakash Maran, J. J. Hazard. Mater. 2011, 186, 1495. https://doi.org/10.1016/j.jhazmat.2010.12.028
  11. Reungsang, A.; Pattra, S.; Sittijunda, S. Energies 2012, 5, 4746. https://doi.org/10.3390/en5114746
  12. Prakash Maran, J.; Manikandan, S.; Vigna Nivetha, C.; Dinesh, R. Ara. J. Chem. DOI: 10.1016/j.arabjc.2013.02.007 https://doi.org/10.1016/j.arabjc.2013.02.007
  13. APHA, WPCF, AWWA Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association (APHA): Washington, DC, 1992.
  14. Prakash Maran, J.; Manikandan, S.; Thirugnanasambandham, K.; Vigna Nivetha, C.; Dinesh, R. Carbohyd. Polym. 2013, 92, 604. https://doi.org/10.1016/j.carbpol.2012.09.020
  15. Bhatti, M. S.; Reddy, A. S.; Thukral, A. K. J. Hazard. Mater. 2009, 172, 839. https://doi.org/10.1016/j.jhazmat.2009.07.072
  16. Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. J. Serb. Chem. Soc. 2013. DOI: 10.2298/JSC130201053T. https://doi.org/10.2298/JSC130201053T
  17. Kabir, E.; Hussain, D.; Haque, A.; Kim, K. H. Int. J. Green Energy. 2009, 6(4), 381. https://doi.org/10.1080/15435070903107064
  18. Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. J. Serb. Chem. Soc. 2013. DOI: 10.2298/JSC130408074T. https://doi.org/10.2298/JSC130408074T
  19. Tak Hyun, K.; Chulhwan, P.; Eung Bai, Shin.; Sangyong, K. Desalination. 2002, 150, 165. https://doi.org/10.1016/S0011-9164(02)00941-4
  20. Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. J. Serb. Chem. Soc. 2013. DOI: 10.2298/JSC130408074T. https://doi.org/10.2298/JSC130408074T
  21. Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K. Food Sci. Biotechnol. DOI 10.1007/s10068-014-0.
  22. Thirugnanasambandham, K.; Sivakumar, V.; Prakash Maran, J. J. Serb. Chem. Soc. 2013. DOI: 10.2298/JSC130619153T. https://doi.org/10.2298/JSC130619153T

Cited by

  1. Modeling of by-product recovery and performance evaluation of Electro-Fenton treatment technique to treat poultry wastewater vol.46, 2015, https://doi.org/10.1016/j.jtice.2014.09.004
  2. Pilot scale evaluation of feasibility of reuse of wine industry wastewater using reverse osmosis system: modeling and optimization vol.57, pp.53, 2016, https://doi.org/10.1080/19443994.2016.1154894
  3. Optimization of reverse osmosis treatment process to reuse the distillery wastewater using Taguchi design vol.57, pp.51, 2016, https://doi.org/10.1080/19443994.2016.1141323
  4. Evaluation of an electrocoagulation process for the treatment of bagasse-based pulp and paper industry wastewater vol.34, pp.2, 2015, https://doi.org/10.1002/ep.12001
  5. Response surface modelling and optimization of treatment of meat industry wastewater using electrochemical treatment method vol.46, 2015, https://doi.org/10.1016/j.jtice.2014.09.021
  6. Efficiency of electrocoagulation method to treat chicken processing industry wastewater—modeling and optimization vol.45, pp.5, 2014, https://doi.org/10.1016/j.jtice.2014.04.011