Technological Trend of Endoscopic Robots

내시경 로봇의 기술동향

  • Kim, Min Young (School of Electronics Engineering, Kyungpook National University) ;
  • Cho, Hyungsuck (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 김민영 (경북대학교 전자공학부) ;
  • 조형석 (한국과학기술원 기계공학과)
  • Received : 2014.01.24
  • Accepted : 2014.02.03
  • Published : 2014.03.01


Since the beginning of the 21st century, emergence of innovative technologies in robotic and telepresence surgery has revolutionized minimally access surgery and continually has advanced them till recent years. One of such surgeries is endoscopic surgery, in which endoscope and endoscopic instruments are inserted into the body through small incision or natural openings, surgical operations being carried out by a laparoscopic procedure. Due to a vast amount of developments in this technology, this review article describes only a technological state-of-the arts and trend of endoscopic robots, being further limited to the aspects of key components, their functional requirements and operational procedure in surgery. In particular, it first describes technological limitations in developments of key components and then focuses on the description of the performance required for their functions, which include position control, tracking, navigation, and manipulation of the flexible endoscope body and its end effector as well, and so on. In spite of these rapid developments in functional components, endoscopic surgical robots should be much smaller, less expensive, easier to operate, and should seamlessly integrate emerging technologies for their intelligent vision and dexterous hands not only from the points of the view of surgical, ergonomic but also from safety. We believe that in these respects a medical robotic technology related to endoscopic surgery continues to be revolutionized in the near future, sufficient enough to replace almost all kinds of current endoscopic surgery. This issue remains to be addressed elsewhere in some other review articles.


Supported by : 지식경제부


  1. Inspiring the Human Care - CUREXO. Available:
  2. R. H. Taylor, L. Joskowicz, B. Williamson, A. Gueziec, A. Kalvin, P. Kazanzides, R. V. Vorhis, J. Yao, R. Kumar, A. Bzostek1, A. Sahay, M. Borner, and A. Lahmer, "Computerintegrated revision total hip replacement surgery: concept and preliminary results," Medical Image Analysis, vol. 3, no. 3, pp 301-319, 1999.
  3. W. L. Bargar, A. Bauer, and M. Borner, "Primary and revision total hip replacement using the robodoc system," Clinical Orthopaedics & Related Research, vol. 354, pp. 82-91, 1998.
  4. Intuitive Surgical, Inc. - da Vinci Surgical System. Available:
  5. G. Hubens, H. Coveliers, L. Balliu, M. Ruppert, and W. Vaneerdeweg, "A performance study comparing manual and robotically assisted laparoscopic surgery using the da Vinci system," Surgical Endoscopy, vol. 17, pp. 1595-1599, 2003.
  6. G. Haber, M. A. White, R. Autorino, P. F. Escobar, M. D. Kroh, S. Chalikonda, R. Khanna, S. Forest, B. Yang, F. Altunrende, R. J. Stein, and J. H. Kaouk, "Novel robotic da vinci instruments for laparoendoscopic single-site surgery," Urology, vol. 76, no. 6, pp. 1279-1282, 2010.
  7. T. E. Ahlering, D. Skarecky, D. Lee, and R. V. Clayman, "Successful transfer of open surgical skills to a laparoscopic environment using a robotic interface: initial experience with laparoscopic radical prostatectomy," Urology, vol. 170, no. 5, pp. 1738-1741, 2003.
  8. K. H. Rha, "The present and future of robotic surgery," Journal of Korean Medical Association (in Korean), vol. 51, no. 1, pp. 67-73, 2008.
  9. K. Masamune and J. Hong, "Advanced imaging and robotics technologies for medical applications," International Journal of Optomechatronics, vol. 5, pp. 299-321, 2011.
  10. R. H. Taylor and D. Stoianovici, "Medical robotics in computerintegrated surgery," IEEE Trans. Robotics and Automation, vol. 19, no. 5, pp. 765-781, 2003.
  11. T. Dohi, "Computer aided surgery and micro machine," Proceedings of the 6-th International Symposium on Micro Machine and Human Science, pp. 21-24, 1995.
  12. A. R. Gunkel, M. Vogele, A. Martin, R. J. Bale, W. F. Thumfart, and W. Freysinger, "Computer-aided surgery in the petrous bone," Laryngoscope, vol. 109, no. 11, pp. 1793-1799, 1995.
  13. R. Seemann and A. Wagner, "Basic research and 12 years of clinical experience in computer-assisted navigation technology: A review," International Journal of Oral and Maxillofacial Surgery, vol. 34, no. 1, pp. 1-8, 2005.
  14. I. Halim and A. Tavakkolizadeh, "NOTES: The next surgical revolution," International Journal of Surgery, vol. 6, no. 4, pp. 273-276, 2008.
  15. D. Canes, et al., "Transumbilical single-port surgery: evolution and current status," European Urology, vol. 54, pp. 1020-1030, 2008.
  16. M. M. Tiwari, J. F. Reynoso, A. C. Lehman, A. W. Tsang, S. M. Farritor, and D. Oleynikov, "In vivo miniature robots for natural orifice surgery: State of the art and future perspectives," World Journal of Gastrointestinal Surgery, vol. 2, no. 6, pp. 217-223, 2010.
  17. K. Kim, K. H. Won, and H. Choi, "Technical characteristics and trends of capsule endoscope," Journal of Korea Information and Communications Society (in Korean), vol. 37, no. 4, pp. 329-337, 2012.
  18. K. Kim and T. Kim, "Recent advances in medical image processing and diagnosis technology for capsule endoscope systems," Journal of Korea Information and Communications Society (in Korean), vol. 38, no. 9, pp. 802-812, 2013.
  19. K. Wang, G. Yan, P. Jiang, and D. Ye, "A wireless robotic endoscope for gastrointestine," IEEE Trans. Robotics, vol. 24, no. 1, pp. 206-210, 2008.
  20. A. Moglia, A. Menciassi, M. O. Schurr, and P. Dario, "Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems," Biomed Microdevices, vol. 9, pp. 235-243, 2007.
  21. S. Yim and M. Sitti, "Design and rolling locomotion of a magnetically actuated soft capsule endoscope," IEEE Trans. Robotics, vol. 28, no. 1, pp. 183-194, 2012.
  22. M. Tomikawa, T. Akahoshi, N. Kinjo, H. Uehara, N. Hashimoto, Y. Nagao, M. Kamori, R. Kumashiro, Y. Maehara, and M. Hashizume, "Rigid and flexible endoscopic rendezvous in spatium peritonealis may be an effective tactic for laparoscopic megasplenectomy: significant implications for pure natural orifice transluminal endoscopic surgery," Surgical Endoscopy, vol. 26, pp. 3573-3579, 2012.
  23. A. Perneczky and G. Fries, "Endoscope-assisted Brain Surgery: Part 1-Evolution, Basic Concept, and Current Technique," Neurosurgery, vol. 42, no. 2, pp. 219-224, 1998.
  24. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, "Wireless capsule endoscopy," Nature, vol. 405, no. 6785, pp. 417-418, 2000.
  25. G. Gay, M. Delvaux, and J.-F. Rey, "The role of video capsule endoscopy in the diagnosis of digestive diseases: a review of current possibilities," Endoscopy, vol. 36, no. 10, pp. 913-920, 2004.
  26. R. Autorino, J. A. Cadeddu, M. M. Desai, M. Gettman, I. S. Gill, L. R. Kavoussi, E. Lima, F. Montorsi, L. Richstone, J. U. Stolzenburg, and J. H. Kaouk, "Laparoendoscopic single-site and natural orifice transluminal endoscopic surgery in urology: a critical analysis of the literature," European Urology, vol. 59, pp. 26-45, 2011.
  27. D. J. Abbott, C. Becke, R. I. Rothstein, and W. J. Peine, "Design of an endoluminal NOTES robotic system," Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 410-416, 2007.
  28. M. E. Rentschler, J. Dumpert, S. R. Platt, S. M. Farritor, and D. Oleynikov, "Natural orifice surgery with an endoluminal mobile robot," Surgical Endoscopy, vol. 21, pp. 1212-1215, 2007.
  29. X. Wang and M. Q.-H. Meng, "Robotics for natural orifice transluminal endoscopic surgery: a review," Journal of Robotics, vol. 2012, Article ID 512616, 2012.
  30. L. M. Su, B. P. Vagvolgyi, R. Agarwal, C. E. Reiley, R. H. Taylor, and G. D. Hager, "Augmented reality during robot-assisted laparoscopic partial nephrectomy: Toward real-time 3D-CT to stereoscopic video registration," Urology, vol. 73, no. 4, pp. 896-900, 2009.
  31. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Optics Express, vol. 14, no. 5, pp. 1878-1887, 2006.
  32. L. P. Hariri, Z. Qiu, A. R. Tumlinson, D. G. Besselsen, E. W. Gernere, N. A. Ignatenko, B. Povazay, B. Hermann, H. Sattmann, J. McNally, A. Unterhuber, W. Drexler, and J. K. Barton, "Serial endoscopy in azoxymethane treated mice using ultra-high resolution optical coherence tomography," Cancer Biology & Therapy, vol. 6, no. 11, pp. 1753-1762, 2007.
  33. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Optics Letters, vol. 21, no. 7, pp. 543, 1996.
  34. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science, vol. 276, no. 5321, pp. 2037-2039, 1997.
  35. H. Bertani, R. Conigliaro, and F. Pigo, "New techniques in endoscopy: confocal laser endomicroscopy," in New Techniques in Gastrointestinal Endoscopy, Prof. Oliviu Pascu (Ed.), InTech, 2011.
  36. B. Abrat and A. Masters, "Endoscopic confocal microscopy moves into the clinic," Biophotonics International, Nov. 2006.
  37. W. Piyawattanametha and T. D. Wang, "MEMS-based dual axes confocal microendoscopy," IEEE J. Selected Topics on Quantum Electronics, vol. 16, no. 4, pp. 804-814, Jul. 2010.
  38. T. E. Yusuf, G. C. Harewood, J. E. Clain, and M. J. Levy, "International survey of knowledge of indications for EUS," Gastrointestinal Endoscopy, vol. 63, no. 1, pp. 107-111, Jan. 2006.
  39. J. Dargahi, M. Parameswaran, and S. Payandeh, "A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments," Journal of Microelectromechanical Systems, vol. 9, no. 3, pp. 329-335, 2000.
  40. J. Dargahi and S. Najarian, "Advances in tactile sensors design/manufacturing and its impact on robotics applications - a review," Industrial Robot: An International Journal, vol. 32, no. 3, pp. 268-281, 2005.
  41. P. Puangmali, K. Althoefer, L. D. Seneviratne, D. Murphy, and P. Dasgupta, "State-of-the-art in force and tactile sensing for minimally invasive surgery," IEEE Sensors Journal, vol. 8, no. 4, pp. 371-381, Apr. 2008.
  42. K. Takashima, K. Yoshinaka, T. Okazaki, and K. Ikeuchi, "An endoscopic tactile sensor for low invasive surgery," Sensors and Actuators A: Physical, vol. 119, pp. 372-383, 2005.
  43. Aurora Electromagnetic Measurement System - 3D Tracking for Medical Guidance | NDI. Available:
  44. X. Li, B. Li, S. Song, C. Hu, and M. Q.-H. Meng, "Endoscopes shape reconstruction based on electromagnetic localization and curve fitting," Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 819-824, 2012.
  45. Y. Haga, T. Mineta, W. Makishi, T. Matsunaga, and M. Esashi, "Active bending catheter and electric endoscope using shape memory alloy," in Shape Memory Alloys, Corneliu Cismasiu (Ed.), InTech, 2010.
  46. A. Menciassi, J. H. Park, S. Lee, S. Gorini, P. Dario, and J. Park, "Robotic solutions and mechanisms for a semi-autonomous endoscope," Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1379-1384, 2002.
  47. P. Dario, M. C. Carrozza, L. Lencioni, B. Magnani, and S. D'Attanasio, "A micro robotic system for colonoscopy," Proc. IEEE Int. Conf. Robotics & Automation, pp. 1567-1572, 1997.
  48. M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, "Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review," Smart Materials and Structures, vol. 7, no. 6, R15-R30, 1998.
  49. B. Kim, S. Park, C. Y. Jee, and S. Yoon, "An earthworm-like locomotive mechanism for capsule endoscopes," Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 2997-3002, 2005.
  50. B. Kim, S. Lee, J. H. Park, and J. Park, "Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs)," IEEE/ASME Trans. Mechatronics, vol. 10, no. 1, pp. 77-86, 2005.
  51. C. Hayhurst, P. Byrne, P. R. Eldridge, and C. L. Mallucci, "Application of electromagnetic technology to neuronavigation: a revolution in image-guided neurosurgery," Journal of Neurosurgery, vol. 111, no. 6, pp. 1179-1184, Dec. 2009.
  52. R. Lapeer, M. S. Chen, G. Gonzalez, A. Linney, and G. Alusi, "Image-enhanced surgical navigation for endoscopic sinus surgery: evaluating calibration, registration and tracking," Int. J. Med Robot, vol. 4, no. 1, pp. 32-45, Mar. 2008.
  53. S. Zhang, Y. Guo, and A. Ritter, "Capsule robot in gastrointestinal tract: a case study for robot programming and navigation," Selected Topics in Micro/Nano Robotics for Biomedical Application, Y. Guo (Ed.), Springer, 2013.
  54. G. Ciuti, M. Visentini-Scarzanella, A. Dore, A. Menciassi, P. Dario, and G.-Z. Yang, "Intra-operative monocular 3D reconstruction for image-guided navigation in active locomotion capsule endoscopy," Proc. of IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 768-774, 2012.
  55. D. J. Mirota, H. Wang, R. H. Taylor, M. Ishii, G. L. Gallia, and G. D. Hager, "A system for video-based navigation for endoscopic endonasal skull base surgery," IEEE Trans Medical Imaging, vol. 31, no. 4, pp. 963-76, Apr. 2012.
  56. N. C. Atuegwu, L. Mawn, and R. Galloway, "Transorbital endoscopic image guidance," Proc. of IEEE Engineering in Medicine and Biology Society, pp. 4663-4666, 2007.
  57. X. Luo, T. Reichl, M. Feuerstein, T. Kitasaka, and K. Mori, "Modified hybrid bronchoscope tracking based on sequential Monte Carlo sampler: dynamic phantom validation," Proc. Asian Conference on Computer Vision, pp. 409-421, 2010.
  58. T. Reichl, X. Luo, M. Menzel, H. Hautmann, K. Mori, and N. Navab, "Hybrid electromagnetic and image-based tracking of endoscopes with guaranteed smooth output," Int. Journal of Computer Assisted Radiology and Surgery, vol. 8, pp. 955-965, 2013.
  59. H. Yamashita, A. Iimura, E. Aoki, T. Suzuki, T. Nakazawa, E. Kobayashi, M. Hashizume, I. Sakuma, and T. Dohi, "Development of endoscopic forceps manipulator using multislider linkage mechanisms," Proc. of the 1st Asian Symposium on Computer Aided Surgery - Robotic and Image guided Surgery, PO14, 2005.
  60. H. Yamashita, D. Kim, N. Hata, and T. Dohi, "Multi-slider linkage mechanism for endoscopic forceps manipulator," Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 2577-2582, 2003.
  61. C. M. Seow, W. J. Chin, C. A. Nelson, A. Nakamura, S. M. Farritor, and D. Oleynikov, "Articulated manipulator with multiple instruments for natural orifice transluminal endoscopic surgery," J. Med. Devices, vol. 7, no. 4, 041004, 2013.
  62. A. Lehman, J. Dumpert, N. A. Wood, L. Redden, A. Q. Visty, S. Farritor, B. Varnell, and D. Oleynikov, "Natural orifice cholecystectomy using a miniature robot," Surgical Endoscopy, vol. 23, no. 2, pp. 260-266, 2009.
  63. J. M. Oliveira, Y. Chen, and I. W. Hunter, "Two-axis bend sensor design, kinematics and control for a continuum robotic endoscope," Proc. IEEE International Conference on Robotics and Automation, pp. 704-710, 2013.
  64. J. Peirs, D. Reynaerts, and H. V. Brussel, "A miniature manipulator for integration in a self-propelling endoscope," Sensors and Actuators A: Physical, vol. 92, pp. 343-349, 2001.
  65. C. Vara-Thorbeck, V. F. Munoz, R. Toscano, J. Gomez, J. Fernandex, M. Felices, and A. Garcia-Cerezo, "A new robotic endoscope manipulator," Surgical Endoscopy, vol. 15, pp. 924-927, 2001.
  66. M. Fleute, Shape Reconstruction for Computer Assisted Surgery based on Non-Rigid Registration of Statistical Models with Intra-Operative Point Data and X-ray Images, Doctoral dissertation, Joseph Fourier University, 2004.
  67. B. C. Shah, S. L. Buettner, A. C. Lehman, S. M. Farritor, and D. Oleynikov, "Miniature in vivo robotics and novel robotic surgical platforms," Urologic Clinics of North America, vol. 36, no. 2, pp. 251-263, 2009.
  68. K.-Y. Ho, et al., "Endoscopic submucosal dissection of gastric lesions by using a Master and Slave Transluminal Endoscopic Robot (MASTER)," Gastrointestinal Endoscopy, vol. 72, no. 3, pp. 593-599, 2010.
  69. S. N. Shaikh and C. C. Thompson, "Natural orifice translumenal surgery: Flexible platform review," World Journal of Gastrointestinal Surgery, vol. 2, no. 6, pp. 210-216, 2010.
  70. D. K. Mullady, D. B. Lautz, and C. C. Thompson, "Treatment of weight regain after gastric bypass surgery when using a new endoscopic platform: initial experience and early outcomes," Gastrointestinal Endoscopy, vol. 70, no. 3, pp. 440-444, 2009.
  71. S. Park, R. A. Bergs, R. Eberhart, L. Baker, R. Fernandez, and J. A. Cadeddu, "Trocar-less instrumentation for laparoscopy," Annals of Surgery, vol. 245, no. 3, pp. 379-384, 2007.
  72. The BioRobotics Institute. Available:
  73. Science and Technology of Robotics in Medicine in Vanderbilt University. Available:
  74. Advanced Robotics and Mechanism Applications. Available:
  75. Computer Integrated Interventional Systems Laboratory in JHU. Available:
  76. D. J. Mirota, M. Ishii, and G. D. Hager, "Vision-based navigation in image-guided interventions," Annual Review of Biomedical Engineering, vol. 13, pp. 297-320, 2011.
  77. Advanced Therapeutic and Rehabilitation Engineering laboratory in Tokyo University. Available:,com_frontpage/Itemid,1/
  78. Advanced Robotics and Mechanism Applications. Available:
  79. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, "Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging," J. Biophotonics, vol. 3, no. 5-6, pp. 385-407, 2010.
  80. H. Atsumi, M. Matsumae, A. Hirayama, K. Sato, H. Shigematsu, G. Inoue, J. Nishiyama, M. Yoshiyama, and J. Tominaga, "Newly developed electromagnetic tracked flexible neuroendoscope," Neurologia Medico-chirurgica, vol. 51, no. 8, pp. 611-616, 2011.
  81. H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, "Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay," Computerized Medical Imaging and Graphics, vol. 34, no. 1, pp. 46-54, 2010.