A Survey of Robust Control in Both Frequency Domain and Time Domain

주파수와 시간영역에서의 강인제어에 관한 연구동향조사

  • Jeung, Eun Tae (Control and Instrumentation Engineering, Changwon National University) ;
  • Park, Hong Bae (Graduate School of Electronics Engineering, Kyungpook National University)
  • 정은태 (창원대학교 제어계측공학과) ;
  • 박홍배 (경북대학교 IT대학 전자공학부)
  • Received : 2014.01.24
  • Accepted : 2014.02.03
  • Published : 2014.03.01


This survey paper reviews robust control problems in both frequency domain and time domain. Robust control is focused on model uncertainties such as modeling error, system parameter variations, and disturbances. Robust control design problems are discussed according to parameter uncertainty, polytopic uncertainty, and norm-bounded uncertainty. Nowadays, robust control theory is combined with various control theory such as model predictive control, adaptive control, intelligent control, and time delay control.


  1. P. Bernhard, "Survey of linear quadratic robust control," Macroeconomic Dynamics, vol. 6, pp. 19-39, 2002.
  2. V. L. Kharitonov, "Asymptotic stability of an equilibrium position of a family of systems linear differential equations," Differential'nye Uraveniya, vol. 14, no. 11, pp. 1483-1485, 1978.
  3. V. L. Kharitonov, "On a generalization of a stability criterion," Akademii nauk Kahskoi SSR, Fiziko-Matenaticheskaia, vol. 1, pp. 53-57, 1978.
  4. B. R. Barmish, "New tools for robustness analysis," Proc. 27th IEEE CDC, pp. 1-6, 1988.
  5. H. Chapellat and S. P. Bhattacharyya, "A generalization of Kharitonov's theorem: Robust stability of interval plants," IEEE Trans. Automat. Contr., vol. 34, no. 3, pp. 306-311, 1989.
  6. D. S. Bernstein and W. M. Haddad, "Robust controller synthesis using Kharitonov's theorem," IEEE Trans. Automat. Contr., vol. 37, no. 1, pp. 129-132, 1992.
  7. R. Toscano and P. Lyonnet, "Robust static output feedback controller synthesis using Kharitonov's theorem and evolutionary algorithm," Information Sciences, vol. 180, pp. 2023-2028, 2010.
  8. Y. J. Huang and Y.-J. Wang, "Robust PID tuning strategy for uncertain plants based on the Kharitonov's theorem," ISA Transactions, vol. 39, pp. 419-431, 2000.
  9. N. Tan I. Kaya, C. Yeroglu, and D. P. Atherton, "Computation of stabilizing PI and PID controllers using the stability boundary locus," Energy Conversion and Management, vol. 47. no. 18-19, pp. 3045-3058. 2006.
  10. Y. V. Hote, J. R. P. Gupta, and D. R. Choudhury, "Kharitonov's theorem and Routh criterion for stability margin of interval systems," Int. J. Control, Automation, and Systems, vol. 8, no. 3, pp. 647-654, 2010.
  11. T. Meressi, D. Chen, and B. Paden, "Application of Kharitonov's theorem to mechanical systems," IEEE Trans. Automat. Contr., vol. 38, no. 3, pp. 488-491, 1993.
  12. D. Czarkowski, L. R. Pujara, and M. K. Kazimierczuk, "Robust stability of state-feedback control of PWM DC-DC push-pull converter," IEEE Trans. Ind. Electronics, vol. 42, no. 1, pp. 108-111, 1995.
  13. Y. V. Hote, D. R. Roy, and J. R. P. Gupta, "Robust stability analysis of the PWM push-pull DC-DC converter," IEEE Trans. Power Electronics, vol. 24, no. 10, pp. 2353-2356, 2009.
  14. G. Rigatos and P. Siano, "Design of robust electric power system stablilizers using Kharitonov's theorem," Mathematics and Computers in Simulation, vol. 82, no. 1, pp. 181-191, 2011.
  15. A. C. Bartlett, C. V. Hollot, and H. Lin, "Root locations of an entire polynomials: It suffices to check the edges," Mathematics of Control, Singnals and Systems, vol. 1, pp. 61-71, 1989.
  16. M. Fu and B. R. Barmish, "Polytopes of polynomials with zeros in a prescribed set," IEEE Trans. Automat. Contr., vol. 34, no. 5, pp. 544-546, 1989.
  17. D. Henrion and V. Kucera, "Positive polynomials and robust stabilization with fixed-order controllers," IEEE Trans. Automat. Contr., vol. 48, no. 7, pp. 1178-1186, 2003.
  18. M. Chilali and P. Gahinet, "$H_{\infty}$ design with pole placement constraints: An LMI approach," IEEE Trans. Automat. Contr., vol. 41, no. 3, pp. 358-367, 1996.
  19. D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou, "A new robust D-stability condition for real convex polytopic uncertainty," Systems & Control Letters, vol. 40, no. 1, pp. 21-30, 2000.
  20. S. Gutman and E. J. Jury, "A general theory for matrix root clustering in subregions of the complex plane," IEEE Trans. Automat. Contr., vol. 26, no. 4, pp. 853-863, 1981.
  21. Wikipedia, Lyapunov Function,
  22. C.-T. Chen, Linear System Theory and Design(3rd Ed.), Oxford University Press, 1999.
  23. K. Zhou, J. C. Doyle, K. Glover, Robust and Optimal Control, Prentice-Hall, Englewood Cliffs, NJ, 1996.
  24. S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Applied Mathematics, 1994.
  25. J. C. Geromel, P. L. D. Peres, and J. Bernussou, "On a convex parameter space method for linear control design of uncertain systems," SIAM J. Control Opt., vol. 29, pp. 381-402, 1991.
  26. P. Gahinet, P. Apkarian, and M. Chilali, "Affine parameter- dependent Lyapunov functions and real parametric uncertainty," IEEE Trans. Automat. Contr., vol. 41, no. 3, pp. 436-442, 1996.
  27. T. Mori and H. Kokame, "A parameter-dependent Lyapunov function for a polytope of matrices," IEEE Trans. Automat. Contr., vol. 45, no. 8, pp. 1516-1519, 2000.
  28. D. C. W. Ramos and P. L. D. Peres, "An LMI condition for the robust stability of uncertain continuous-time linear systems," IEEE Trans. Automat. Contr., vol. 47, no. 4, pp. 675-678, 2002.
  29. R. C. L. F. Oliveira and P. L. D. Peres, "Stability of polytope of matrices via affine parameter-dependent Lyapunov functions: Asymptotically exact LMI condition," Linear Algebra and its Applications, vol. 405, pp. 209-228, 2005.
  30. R. C. L. F. Oliveira and P. L. D. Peres, "LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions," Systems & Control Letters, vol. 55, no. 1, pp. 52-61, 2006.
  31. R. C. L. F. Oliveira and P. L. D. Peres, "Parameter-dependent LMIs in robust analysis: Characterization of Homogeneous polynomially parameter-dependent solutions via LMI relaxations, IEEE Trans. Automat. Contr., vol. 52, no. 7, pp. 1334-1340, 2007.
  32. E. Feron, P. Apkarian, and P. Gahinet, "Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions," IEEE Trans. Automat. Contr., vol. 41, pp. 1041-1046, 1996.
  33. M. C. de Oliveira, J. Bernussou, and J. C. Geromel, "A new discrete-time robust stability condition," Systems & Control Letters, vol. 37, no. 4, pp. 261-265, 1999.
  34. D. H. Lee, J. B. Park, Y. H. Joo, and K. C. Lin, "Lifted versions of robust D-stability and D-stabilisation conditions for uncertain polytopic linear systems," IET Control Theory and Applications, vol. 6, no. 1, pp. 24-36, 2012.
  35. P. P. Khargonekar, I. R. Petersen, and K. Zhou, "Robust stabilization of uncertain linear systems: Quadratic stabilizability and $H_{\infty}$ control theory," IEEE Trans. Automat. Contr., vol. 35, no. 3, pp. 356-361, 1990.
  36. B. R. Barmish, "Necessary and sufficient conditions for quadratic stabilizability of an uncertain system," J. Opt. Theory & Applications, vol. 46, no. 4, pp. 399-408, 1985.
  37. Y. Wang, L. Xie, and C. E. de Souza, "Robust control of a class of uncertain nonlinear systems," Systems & Control Letters, vol. 19, no. 2, pp. 139-149, 1992.
  38. E. T. Jeung, D. C. Oh, J. H. Kim, and H. B. Park, "Robust controller design for uncertain systems with time delays: LMI approach," Automatica, vol. 32, no. 8, pp. 1229-1231. 1996.
  39. J. H. Kim, E. T. Jeung, and H. B. Park, "Robust control for parameter uncertain delay systems in state and control input," Automatica, vol. 32, no. 9, pp. 1337-1339. 1996.
  40. X. Li and C. E. de Souza, "Delay-dependent robust stability and stabilization of uncertain linear delay systems: A linear matrix inequality approach," IEEE Trans. Automat. Contr., vol. 42, no. 8, pp. 1144-1148, 1997.
  41. Y.-Y. Cao and J. Lam, "Robust $H_{\infty}$ control of uncertain Markovian jump systems with time-delay," IEEE Trans. Automat. Contr., vol. 45, no. 1, pp. 77-83, 2000.
  42. S. Xu, P. V. Dooren, R. Stefan, and J. Lam, "Robust stability and stabilization for singular systems with state delay and parameter uncertainty," IEEE Trans. Automat. Contr., vol. 47, no. 7, pp. 1122-1128, 2002.
  43. G. Zames, "Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses," IEEE Trans. Automat. Contr., vol. 26, no. 2, pp. 301-320, 1981.
  44. J. Doyle and G. Stein, "Multivariable feedback design: Concepts for a classical/modern synthesis," IEEE Trans. Automat. Contr., vol. 26, no. 1, pp. 4-16, 1981.
  45. B. A. Francis, A Course in $H_{\infty}$ Control Theory, vol. 88, Lecture Notes in Control and Information Science, New-York, Springer-Verlag, 1987.
  46. J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, "State space solutions to standard $H_2$ and $H_{\infty}$ control problems," IEEE Trans. Automat. Contr., vol. 34, no. 8, pp. 831-847, 1989.
  47. P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, Matlab LMI Control Toolbox, Mathworks, 1995.
  48. P. Gahinet and P. Apkarian, "A linear matrix inequality approach to $H_{\infty}$ control," Int. J. Robust and Nonlinear Contr., vol. 4, no. 4, pp. 421-448, 1994.
  49. T. Iwasaki and R. E. Skelton, "All controllers for the general $H_{\infty}$ control problem: LMI existence conditions and state-space formulas," Automatica, vol. 30, no. 8, pp. 1307-1317, 1994.
  50. P. P. Khargonekar and M. A. Rotea, "Mixed $H_2/H_{\infty}$ control: A convex optimization approach," IEEE Trans. Automat. Contr., vol. 36, no. 7, pp. 824-837, 1991.
  51. J. C. Doyle, "Structured uncertainty in control system design," Proc. 24th CDC, FL, pp. 260-265, 1985.
  52. L. Xie, "Output feedback $H_{\infty}$ control of systems with parameter uncertainty," Int. J. Control, vol. 63, no. 4, pp. 741-750, 1996.