DOI QR코드

DOI QR Code

Perspectives on the therapeutic potential of short-chain fatty acid receptors

  • Received : 2013.12.03
  • Accepted : 2013.01.13
  • Published : 2014.03.31

Abstract

There is rapidly growing interest in the human microbiome because of its implication in metabolic disorders and inflammatory diseases. Consequently, understanding the biology of short chain fatty acids and their receptors has become very important for identifying novel therapeutic avenues. GPR41 and GPR43 have been recognized as the cognate receptors for SCFAs and their roles in metabolism and inflammation have drawn much attention in recent years. GPR43 is highly expressed on immune cells and has been suggested to play a role in inflammatory diseases such as inflammatory bowel disease. Both GPR41 and GPR43 have been implicated in diabetes and obesity via the regulation of adipose tissue and gastrointestinal hormones. So far, many studies have provided contradictory results, and therefore further research is required to validate these receptors as drug targets. We will also discuss the synthetic modulators of GPR41 and GPR43 that are critical to understanding the functions of these receptors.

Keywords

GPR41;GPR43;Inflammation;Obesity;SCFA

References

  1. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272. https://doi.org/10.1124/mol.63.6.1256
  2. Lagerstrom, M. C. and Schioth, H. B. (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339-357. https://doi.org/10.1038/nrd2518
  3. Kolakowski, L. F., Jr. (1994) GCRDb: a G-protein-coupled receptor database. Receptors Channels 2, 1-7.
  4. Bockaert, J. and Pin, J. P. (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723-1729. https://doi.org/10.1093/emboj/18.7.1723
  5. Overington, J. P., Al-Lazikani, B. and Hopkins, A. L. (2006) How many drug targets are there? Nat. Rev. Drug Discov. 5, 993-996. https://doi.org/10.1038/nrd2199
  6. Bergman, E. N. (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567-590. https://doi.org/10.1152/physrev.1990.70.2.567
  7. Mortensen, P. B. and Clausen, M. R. (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand. J. Gastroenterol. Suppl. 216, 132-148.
  8. den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J. and Bakker, B. M. (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325-2340. https://doi.org/10.1194/jlr.R036012
  9. Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N. B., Strum, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., Foord, S. M., Wise, A. and Dowell, S. J. (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312-11319. https://doi.org/10.1074/jbc.M211609200
  10. Le Poul, E., Loison, C., Struyf, S., Springael, J. Y., Lannoy, V., Decobecq, M. E., Brezillon, S., Dupriez, V., Vassart, G., Van Damme, J., Parmentier, M. andDetheux, M. (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481-25489. https://doi.org/10.1074/jbc.M301403200
  11. Sawzdargo, M., George, S. R., Nguyen, T., Xu, S., Kolakowski, L. F. and O'Dowd, B. F. (1997) A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem. Biophys. Res. Commun. 239, 543-547. https://doi.org/10.1006/bbrc.1997.7513
  12. Nilsson, N. E., Kotarsky, K., Owman, C. and Olde, B. (2003) Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047-1052. https://doi.org/10.1016/S0006-291X(03)00488-1
  13. Nakajima, T., Iikura, M., Okayama, Y., Matsumoto, K., Uchiyama, C., Shirakawa, T., Yang, X., Adra, C. N., Hirai, K. and Saito, H. (2004) Identification of granulocyte subtype-selective receptors and ion channels by using a high-density oligonucleotide probe array. J. Allergy Clin. Immunol. 113, 528-535. https://doi.org/10.1016/j.jaci.2003.12.036
  14. Senga, T., Iwamoto, S., Yoshida, T., Yokota, T., Adachi, K., Azuma, E., Hamaguchi, M. and Iwamoto, T. (2003) LSSIG is a novel murine leukocyte-specific GPCR that is induced by the activation of STAT3. Blood 101, 1185-1187. https://doi.org/10.1182/blood-2002-06-1881
  15. Hudson, B. D., Tikhonova, I. G., Pandey, S. K., Ulven, T. and Milligan, G. (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3. J. Biol. Chem. 287, 41195-41209. https://doi.org/10.1074/jbc.M112.396259
  16. Lee, S. U., In, H. J., Kwon, M. S., Park, B. O., Jo, M., Kim, M. O., Cho, S., Lee, S., Lee, H. J., Kwak, Y. S. and Kim, S. (2013) beta-Arrestin 2 Mediates G Protein-Coupled Receptor 43 Signals to Nuclear Factor-kappaB. Biol. Pharm. Bull. 36, 1754-1759. https://doi.org/10.1248/bpb.b13-00312
  17. Xiong, Y., Miyamoto, N., Shibata, K., Valasek, M. A., Motoike, T., Kedzierski, R. M. and Yanagisawa, M. (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl. Acad. Sci. U. S. A. 101, 1045-1050. https://doi.org/10.1073/pnas.2637002100
  18. Hong, Y. H.,Nishimura, Y., Hishikawa, D., Tsuzuki, H., Miyahara, H., Gotoh, C., Choi, K. C., Feng, D. D., Chen, C., Lee, H. G., Katoh, K., Roh, S. G. and Sasaki, S. (2005) Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092-5099. https://doi.org/10.1210/en.2005-0545
  19. Zaibi, M. S., Stocker, C. J., O'Dowd, J., Davies, A., Bellahcene, M., Cawthorne, M. A., Brown, A. J., Smith, D. M. and Arch, J. R. (2010) Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584, 2381-2386. https://doi.org/10.1016/j.febslet.2010.04.027
  20. Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K., Tani, T., Takahashi, T., Miyauchi, S., Shioi, G., Inoue, H. and Tsujimoto, G. (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829. https://doi.org/10.1038/ncomms2852
  21. Kimura, I., Inoue, D., Maeda, T., Hara, T., Ichimura, A., Miyauchi, S., Kobayashi, M., Hirasawa, A. and Tsujimoto, G. (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. U. S. A. 108, 8030-8035. https://doi.org/10.1073/pnas.1016088108
  22. Nohr, M. K., Pedersen, M. H., Gille, A., Egerod, K. L., Engelstoft, M. S., Husted, A. S., Sichlau, R. M., Grunddal, K. V., Poulsen, S. S., Han, S., Jones, R. M., Offermanns, S. and Schwartz, T. W. (2013) GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154, 3552-3564. https://doi.org/10.1210/en.2013-1142
  23. Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K., Hammer, R. E., Williams, S. C., Crowley, J., Yanagisawa, M. and Gordon, J. I. (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. U. S. A. 105, 16767-16772. https://doi.org/10.1073/pnas.0808567105
  24. Lin, H. V., Frassetto, A., Kowalik, E. J., Jr., Nawrocki, A. R., Lu, M. M., Kosinski, J. R., Hubert, J. A., Szeto, D., Yao, X., Forrest, G. and Marsh, D. J. (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7, e35240. https://doi.org/10.1371/journal.pone.0035240
  25. Inoue, D., Kimura, I., Wakabayashi, M.,Tsumoto, H., Ozawa, K., Hara, T., Takei, Y., Hirasawa, A., Ishihama, Y. and Tsujimoto, G. (2012) Short-chain fatty acid receptor GPR41-mediated activation of sympathetic neurons involves synapsin 2b phosphorylation. FEBS Lett. 586, 1547-1554. https://doi.org/10.1016/j.febslet.2012.04.021
  26. Karaki, S., Mitsui, R., Hayashi, H., Kato, I., Sugiya, H., Iwanaga, T., Furness, J. B. and Kuwahara, A. (2006) Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 324, 353-360. https://doi.org/10.1007/s00441-005-0140-x
  27. Vinolo, M. A., Ferguson, G. J., Kulkarni, S., Damoulakis, G., Anderson, K., Bohlooly, Y. M., Stephens, L., Hawkins, P. T. and Curi, R. (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6, e21205. https://doi.org/10.1371/journal.pone.0021205
  28. Karaki, S., Tazoe, H., Hayashi, H., Kashiwabara, H., Tooyama, K., Suzuki, Y. and Kuwahara, A. (2008) Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39, 135-142. https://doi.org/10.1007/s10735-007-9145-y
  29. Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H. C., Rolph, M. S., Mackay, F., Artis, D., Xavier, R. J., Teixeira, M. M. and Mackay, C. R. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282-1286. https://doi.org/10.1038/nature08530
  30. Sina, C., Gavrilova, O., Forster, M., Till, A., Derer, S., Hildebrand, F., Raabe, B., Chalaris, A., Scheller, J., Rehmann, A., Franke, A., Ott, S., Hasler, R., Nikolaus, S., Folsch, U. R., Rose-John, S., Jiang, H. P., Li, J., Schreiber, S. and Rosenstiel, P. (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514-7522. https://doi.org/10.4049/jimmunol.0900063
  31. Kim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M. and Kim, C. H. (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145, 396-406 e391-310. https://doi.org/10.1053/j.gastro.2013.04.056
  32. Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly, Y. M., Glickman, J. N. and Garrett, W. S. (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569-573. https://doi.org/10.1126/science.1241165
  33. Haber, E. P., Ximenes, H. M., Procopio, J., Carvalho, C. R., Curi, R. and Carpinelli, A. R. (2003) Pleiotropic effects of fatty acids on pancreatic beta-cells. J. Cell Physiol. 194, 1-12. https://doi.org/10.1002/jcp.10187
  34. Reaven, G. M., Hollenbeck, C., Jeng, C. Y., Wu, M. S. and Chen, Y. D. (1988) Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37, 1020-1024. https://doi.org/10.2337/diab.37.8.1020
  35. Ge, H., Li, X., Weiszmann, J., Wang, P., Baribault, H., Chen, J. L., Tian, H. and Li, Y. (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149, 4519-4526. https://doi.org/10.1210/en.2008-0059
  36. Lee, T., Schwandner, R., Swaminath, G., Weiszmann, J., Cardozo, M., Greenberg, J., Jaeckel, P., Ge, H., Wang, Y., Jiao, X., Liu, J., Kayser, F., Tian, H. and Li, Y. (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 74, 1599-1609. https://doi.org/10.1124/mol.108.049536
  37. Karra, E. and Batterham, R. L. (2010) The role of gut hormones in the regulation of body weight and energy homeostasis. Mol. Cell. Endocrinol. 316, 120-128. https://doi.org/10.1016/j.mce.2009.06.010
  38. EUROSCREEN (2010) COMPOUNDS, PHARMACEUTICAL COMPOSITION AND METHODS FOR USE IN TREATING METABOLIC DISORDERS. WIPO WO 2010/066682 A1.
  39. Hudson, B. D., Due-Hansen, M. E., Christiansen, E., Hansen, A. M., Mackenzie, A. E., Murdoch, H., Pandey, S. K., Ward, R. J., Marquez, R., Tikhonova, I. G., Ulven, T. and Milligan, G. (2013) Defining the molecular basis for the first potent and selective orthosteric agonists of the FFA2 free fatty acid receptor. J. Biol. Chem. 288, 17296-17312. https://doi.org/10.1074/jbc.M113.455337
  40. Bjursell, M., Admyre, T., Goransson, M., Marley, A. E., Smith, D. M., Oscarsson, J. and Bohlooly, Y. M. (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 300, E211-220. https://doi.org/10.1152/ajpendo.00229.2010
  41. Tolhurst, G., Heffron, H., Lam,Y. S., Parker, H. E., Habib, A. M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F. and Gribble, F. M. (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364-371. https://doi.org/10.2337/db11-1019
  42. Wang, Y., Jiao, X., Kayser, F., Liu, J., Wang, Z., Wanska, M., Greenberg, J., Weiszmann, J., Ge, H., Tian, H., Wong, S., Schwandner, R., Lee, T. and Li, Y. (2010) The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. Bioorg. Med. Chem. Lett. 20, 493-498. https://doi.org/10.1016/j.bmcl.2009.11.112
  43. Swaminath, G., Jaeckel, P., Guo, Q., Cardozo, M., Weiszmann, J., Lindberg, R., Wang, Y., Schwandner, R. and Li, Y. (2011) Mutational analysis of G-protein coupled receptor--FFA2. Biochem. Biophys. Res. Commun. 405, 122-127. https://doi.org/10.1016/j.bbrc.2010.12.139
  44. Bernard, J., Hartiel, A. F., Brantis, C., Hoveyda, H. and Fraser, G. (2009) Identification of a small-molecule GPR43 agonist that Increases glucose uptake and inhibits lipolysis in adipocytes. American Diabetes Association Annual Meeting, New Orleans, LA, USA 69, Abs1362p.
  45. Lee, T., Schwandner, R., Swaminath, G., Weiszmann, J., Cardozo, M., Greenberg, J., Jaeckel, P., Ge, H., Wang, Y., Jiao, X., Liu, J., Kayser, F., Tian, H. and Li, Y. (2008) Identification and functional characterization ofallosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 74, 1599-1609. https://doi.org/10.1124/mol.108.049536
  46. Wang, Y., Jiao, X., Kayser, F., Liu, J., Wang, Z., Wanska, M., Greenberg, J., Weiszmann, J., Ge, H., Tian, H., Wong, S., Schwandner, R., Lee, T. and Li, Y. (2010) The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. Bioorg. Med. Chem. Lett. 20, 493-498. https://doi.org/10.1016/j.bmcl.2009.11.112
  47. EUROSCREEN (2011) PYRROLIDINE OR THIAZOLIDINE CARBOXYLIC ACID DERIVATIVES, PHARMACEUTICAL COMPOSITION AND METHODS FOR USE IN TREATING METABOLIC DISORDERS AS AGONISTS OF G-PROTEIN COUPLED RECEPTOR 43 (GPR43). WIPO WO2011/073376A1.
  48. EUROSCREEN (2011) NOVEL COMPOUNDS, METHOD FOR USE THEM AND PHARMACEUTICAL COMPOSITION CONTAINING THEM. WIPO WO 2011/151436 A2.
  49. Saniere, L. R. M., Pizzonero, M. R., Triballeu, N., Vandeghinste, N. E. R., De Vos, S. I. J., Brys, R. C. X. and Pourbaix-Lebraly, C. D. (2012) AZETIDINE DERIVATIVES USEFUL FOR THE TREATMENT OF METABOLIC AND INFLAMMATORY DISEASES. WIPO WO 2012/098033A1.
  50. Leonard, J. N., Chu, Z. L., Bruce, M. A. and Boatman, P. D. (2006) GPR41 and modulators thereof for the treatment of insulin-related disorders. WIPO WO2006/052566 A2.

Cited by

  1. Complex Pharmacology of Free Fatty Acid Receptors vol.117, pp.1, 2017, https://doi.org/10.1021/acs.chemrev.6b00056
  2. Diet as a Trigger or Therapy for Inflammatory Bowel Diseases vol.152, pp.2, 2017, https://doi.org/10.1053/j.gastro.2016.10.019
  3. Advanced Application of Porcine Intramuscular Adipocytes for Evaluating Anti-Adipogenic and Anti-Inflammatory Activities of Immunobiotics vol.10, pp.3, 2015, https://doi.org/10.1371/journal.pone.0119644
  4. The role of adipose tissue immune cells in obesity and low-grade inflammation vol.222, pp.3, 2014, https://doi.org/10.1530/JOE-14-0283
  5. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. vol.6, pp.1, 2016, https://doi.org/10.1038/srep19032
  6. Gut as an emerging organ for the treatment of diabetes: focus on mechanism of action of bariatric and endoscopic interventions vol.237, pp.1, 2018, https://doi.org/10.1530/JOE-17-0438
  7. The Role of Metabolite-Sensing G Protein-Coupled Receptors in Inflammation and Metabolic Disease vol.29, pp.3, 2018, https://doi.org/10.1089/ars.2017.7168