Thermodynamic Study on the Solubilization of p-Halogenated Phenol Derivatives in TTAB Solution

TTAB 수용액에서 p-할로겐화 페놀유도체들의 가용화에 대한 열역학적 연구

  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Technology & Education)
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Received : 2013.07.17
  • Accepted : 2013.10.11
  • Published : 2014.02.10


The interaction of p-halogenated phenol derivatives with the micellar system of tetradecyltrimethylammonium bromide (TTAB) was studied by the UV/Vis spectrophotometric method. Effects of substituents, additives, and temperatures on the solubilization of phenol derivatives have been measured. The results show that all the values of ${\Delta}G^o$ and ${\Delta}H^o$ were negative and the values of ${\Delta}S^o$ were positive for all phenol derivatives within the measured temperature range. The calculated thermodynamic parameters depended on the size, the electro-negativity, and the hydrophobic property of halogen substituents. The addition of n-butanol results in the decrement in tthe Ks values and the addition of NaCl caused the increment in the Ks values for all the phenol derivatives. From these changes we can postulate that the solubilization sites of the phenol derivatives in the micelle depend severely on properties of the halogen-substituent.


micelle;solubilization constant;p-halogenated phenol;palisade region;isostructural temperature


Supported by : 한국기술교육대학교


  1. K. Sakai, K. Normura, R. G. Shrestha, T. Endo, K. Sakamoto, H. Sakai, and M. Abe, Wormlike micelle formation by acylglutamic acid with alkylamines, Langmuir, 28, 17617-17622 (2012).
  2. B. H. Lee, S. D. Christian, E. E. Tucker, and J. F. Scamehorn, Substituent group effects on the solubilization of polar aromatic solutes (phenols, anilines, and benzaldehydes) by N-hexadecylpyridinium chloride, J. Phys. Chem., 95, 360-365 (1991).
  3. J. Luczak, C. Jungnickel, M. Markiewicz, and J. Hupka, Solubilization of benzene, toluene, and xylene (BTX) in aqueous micellar solutions of amphiphilic imidazolinium ionic liquids, J. Phys. Chem. B, 117, 5653-5658 (2013).
  4. R. Bradbury, J. Penfold, R. K. Thomas, I. M. Tucker, J. T. Petkov, and C. Jones, Adsorption of model perfumes at the air-solution interface by Coadsorption with an anionic surfactant, Langmuir, 29, 3361-3369 (2013).
  5. M. Take'uchi and Y. Moroi, Solubilization of n-alkylbenzenes into lithium 1-perfluoroundecanoate micelles, J. Colloid Interface Sci., 197, 230-235 (1998).
  6. N. M. Lee and B. H. Lee, Mixed micellization of TTAB with other surfactants (DTAB, CTAB, Tween-20, Tween-40, and Tween-80), J. Kor. Chem. Soc., 56, 1-7 (2012).
  7. N. M. Lee and B. H. Lee, Solubilization of para-halogenated benzoic acid isomers by the solution of tetradecyltrimethylammonium bromide, Appl. Chem. Eng., 22, 473-478 (2011).
  8. R. Chaghi, L. C. de Menorval, C. Charnay, G. Derrien, and J. Zajac, Competitive solubilization of phenol by cationic surfactant micelles in the range of low additive and surfactant concentrations, Langmuir, 25, 4868-4874 (2009).
  9. B. Samiey and Z. Dalvand, Kinetics of Methyl Green fading in the presence of TX-100, DTAB and SDS, Bull. Korean Chem. Soc., 34, 1145-1152 (2013).
  10. T. S. Banipal, A. K. Sood, and K. Singh, Micellization behavior of the 14-2-14 gemini surfactant with some conventional surfactants at different temperature, J. Surfact. Deter., 14, 235-244 (2011).
  11. W. Muller, C. Dejugnat, T. Zemb, J. Dufreche, and O. Diat, How do anions affects self-assembly and solubility of cetylpyridinium surfactants in water, J. Phys. Chem. B, 117, 1345-1356 (2013).
  12. T. Mehling, L. Kloss, T. Ingram, and I. Smirnova, Partition coefficients of ionizable solutes in mixed nonionic/ionic micellar system, Langmuir, 29, 1035-1044 (2013).
  13. H. Wang, Q. Feng, J. Wang, and H. Zhang, Salt effect on the aggregation behavior of 1-decyl-3-methylimidazolium bromide in aqueous solution, J. Phys. Chem. B, 114, 1380-1387 (2010).
  14. N. M. Lee and B. H. Lee, Solubilization of 4-alkylbenzoic acid isomers by the aqueous solution of tetradecyltrimethylammonium bromide, J. Kor. Chem. Soc., 56, 188-194 (2012).
  15. B. H. Lee, Solubilization of monochlorophenol isomers by the aqueous solution of tetradecyltrimethylammonium bromide, Appl. Chem. Eng., 21, 337-342 (2010).
  16. M. Khimani, R. Ganguly, V. K. Aswal, and P. Bahadur, Solubilization of parabens in aqueous pluronic solutions: Investigating the micellar growth and interaction as a function of paraben composition, J. Phys. Chem. B, 116, 14943-14950 (2012).
  17. M. Sammalkorpi, M. Karttunen, and M. Haatoja, Ionic surfactant aggregates in saline solutions: Sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride ($CaCl_2$), J. Phys. Chem. B, 113, 5863-5870 (2009).
  18. I. J. Park and B. H. Lee, Mixed micellization of sodium dodecylbenzene sulfonate with polyoxyethylene lauryl ether sulfactants (POLE 4 and POLE 23) in n-butanol aqueous solution, J. Surfact Deterg, 15, 41-46 (2012).
  19. R. Ganguly, K. Kuperkar, P. Parekh, V. K. Aswal, and P. Bahadur, Phenol solubilization in aqueous pluronic solutions : Investigating the micellar growth and interaction as a function of pluronic composition, J. Colloid Interface Sci., 378, 118-124 (2012).
  20. K. Gharanjig, M. S. Kiakhani, A. R. T. Bagha, A. Khosravi, and F. M. Menger, Solubility of two disperse dyes derived from N-alkyl and N-carboxylic acid naphthalimides in the presence of gemini cationic surfactants, J. Surfact. Deterg., 14, 381-389 (2011).
  21. S. Mahajan, R. Sharma, and R. K. Mahajan, An investigation of drug binding ability of a surface active ionic liquid: Micellization, electrochemical, and spectroscopic studies, Langmuir, 28, 17238- 17246 (2012).
  22. T. L. Su, C. C. Lai, and P. C. Tsai, Interactions and solubilization of disperse dye with modified gemini surfactants: Investigation using the Taguchi method, J. Surfact. Deterg., 14, 363-369 (2011).

Cited by

  1. Effects of NaCl and n-Butanol on the Solubilization of 4-Halogenated Phenols in Aqueous Solution of TTAB vol.58, pp.6, 2014,