DOI QR코드

DOI QR Code

The Effects of the IERS Conventions (2010) on High Precision Orbit Propagation

  • Roh, Kyoung-Min ;
  • Choi, Byung-Kyu
  • Received : 2013.11.27
  • Accepted : 2014.01.10
  • Published : 2014.03.15

Abstract

The Earth is not perfectly spherical and its rotational axis is not fixed in space, and these geophysical and kinematic irregularities work as dominant perturbations in satellite orbit propagation. The International Earth Rotation Service (IERS) provides the Conventions as guidelines for using the Earth's model and the reference time and coordinate systems defined by the International Astronomical Union (IAU). These guidelines are directly applied to model orbital dynamics of Earth satellites. In the present work, the effects of the latest conventions released in 2010 on orbit propagation are investigated by comparison with cases of applying the previous guidelines, IERS Conventions (2003). All seven major updates are tested, i.e., for the models of the precession/nutation, the geopotential, the ocean tides, the ocean pole tides, the free core nutation, the polar motion, and the solar system ephemeris. The resultant position differences for one week of orbit propagation range from tens of meters for the geopotential model change from EGM96 to EGM2008 to a few mm for the precession/nutation model change from IAU2000 to IAU2006. The along-track differences vary secularly while the cross-track components show periodic variation. However, the radial-track position differences are very small compared with the other components in all cases. These phenomena reflect the variation of the ascending node and the argument of latitude. The reason is that the changed models tested in the current study can be regarded as small fluctuations of the geopotential model from the point of view of orbital dynamics. The ascending node and the argument of latitude are more sensitive to the geopotential than the other elements. This study contributes to understanding of the relation between the Earth's geophysical properties and orbital motion of satellites as well as satellite-based observations.

Keywords

IERS conventions;orbit propagation;reference frame

References

  1. Bowman BR., Tobiska WK, Marcos FA, Huang C, Lin CS, et al., A New Empirical Thermospheric Density Model JB2008 Using New Solar and Geomagnetic Indices, in 2008 AIAA/AAS Astrodynamics Specialist Conference, Honolulu, Hawaii, 18-21 Aug 2008.
  2. Chapront J, Chapront-Touze M, Fraucou G, A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements, A&A, 387, 700-709 (2002). http://dx.doi.org/10.1051/0004-6361:20020420 https://doi.org/10.1051/0004-6361:20020420
  3. Brzezinski A, Capitaine N, in Proceedings of the Journees 2001 Systemes de Reference Spatio-temporels, eds. Capitaine N (Observatoire de Paris, Paris, 2003), 51-58.
  4. Capitaine N, Gambis D, McCarthy DD, Petit G, Pay J, et al., Proceedings of the IERS Workshop on the Implementation of the New IAU Resolutions, Observatoire de Paris, Paris, France, 18-19 April 2002.
  5. Capitaine N, Wallace PT, Chapront J, Expressions for IAU 2000 precession quantities, A&A, 412, 567-586 (2003). http://dx.doi.org/10.1051/0004-6361:20031539 https://doi.org/10.1051/0004-6361:20031539
  6. Desai SD, Observing the pole tide with satellite altimetry, JGR, 107, 3186 (2002). http://dx.doi.org/10.1029/2001JC001224 https://doi.org/10.1029/2001JC001224
  7. Folkner WM, Williams JG, Boggs DH, The Planetary and Lunar Ephemeris DE 421, The Interplanetary Network Progress Report, vol. 42-178, 1-34 (2009).
  8. Han SC, Shum CK, Jekeli C, Precise estimation of in situ geopotential differences from GRACE low-low satellite-to-satellite tracking and accelerometer data, J. Geophys. Res., 111, B4411 (2006). http://dx.doi.org/10.1029/2005JB003719 https://doi.org/10.1029/2005JB003719
  9. Hohenkerk CY, SOFA - A Status Report, Review and a Look to the Future. in Proceeding of the Journees 2010 Systemes de reference spatio-temporels, 16-19 (2011).
  10. Kopeikin S, Efroimsky M, Kaplan G, Relativistic Celestial Mechanics of the Solar System (Wiley-VCH, Singapore, 2011).
  11. Pavlis NK, Holmes SA. Kenyon SC, Factor JK, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), JGR, 117, 4406 (2012). http://dx.doi.org/10.1029/2011JB008916 https://doi.org/10.1029/2011JB008916
  12. Lambert SB, Empirical Modeling of the Retrograde Free Core Nutation, Technical Note (2007). ftp://hpiers.obspm.fr/iers/models/fcn/notice.pdf.
  13. Lyard F, Lefevre F, Letellier T, Francis O, Modelling the global ocean tides: modern insights from FES2004, Ocean Dynamics, 56, 394-415 (2006). http://dx.doi.org/10.1007/s10236-006-0086-x https://doi.org/10.1007/s10236-006-0086-x
  14. Montenbruck O, Gill E, Satellite Orbits, (Springer-Verlag, Germany, 2001).
  15. Petit G, Luzum B, IERS Conventions (2010), IERS Technical Note, 36 (2010).
  16. Picone JM, Hedin AE, Drob DP, Aikin AC, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, JGR, 107, 1468-1483 (2002). http://dx.doi.org/10.1029/2002JA009430 https://doi.org/10.1029/2002JA009430
  17. Ray RD, Steinberg DJ, Chao BF, Cartwright DE, Dirunal and semi-diurnalvariations in the Earth's rotation rate induced by oceanic tides, Science, 264, 830-832 (1994). http://dx.doi.org/10.1126/science.264.5160.830 https://doi.org/10.1126/science.264.5160.830
  18. Schaub H, Junkins JL, Analytical Mechanics of Space System (AIAA, Reston Virginia, 2003).
  19. Vallado DA, An Analysis of State Vector Propagation Using Differing Flight Dynamics Program, in 2005 AAS/AIAA Space Flight Mechanics Conference, Copper Mountain, Colorado, 23-27 Jan 2005.
  20. Vallado DA, Seago JH, Seidelmann PK, Implementation Issues Surrounding the New IAU Reference Systems for Astrodynamics, in 2006 16th AAS/AIAA Space Flight Mechanics Conference, Tampa, FL, 22-26 Jan 2006.

Cited by

  1. Numerical simulation of the post-Newtonian equations of motion for the near Earth satellite with an application to the LARES satellite vol.58, pp.11, 2016, https://doi.org/10.1016/j.asr.2016.08.009
  2. Normal gravity field in relativistic geodesy vol.97, pp.4, 2018, https://doi.org/10.1103/PhysRevD.97.045020