DOI QR코드

DOI QR Code

Effects of Pre-aeration on the Anaerobic Digestion of Sewage Sludge

  • Ahn, Young-Mi (Department of Energy Business, Korea Environment Corporation) ;
  • Wi, Jun (Department of Environmental Energy Engineering, Anyang University) ;
  • Park, Jin-Kyu (Ecowillplus Co. Ltd.) ;
  • Higuchi, Sotaro (Recycling and Eco-Technology Specialty Graduate School of Engineering, Fukuoka University) ;
  • Lee, Nam-Hoon (Department of Environmental Energy Engineering, Anyang University)
  • Received : 2013.09.27
  • Accepted : 2013.11.22
  • Published : 2014.03.30

Abstract

The aim of this study was to assess the effect of pre-aeration on sludge solubilization and the behaviors of nitrogen, dissolved sulfide, sulfate, and siloxane. The results of this study showed that soluble chemical oxygen demand in sewage sludge could be increased through pre-aeration. The pre-aeration process resulted in a higher methane yield compared to the anaerobic condition (blank). The pre-aeration of sewage sludge, therefore, was shown to be an effective method for enhancing the digestibility of the sewage sludge. In addition, this result confirms that the pre-aeration of sewage sludge prior to its anaerobic digestion accelerates the growth of methanogenic bacteria. Removal rates for $NH_3$-N and T-N increased simultaneously during pre-aeration, indicating simultaneous nitrification and denitrification. The siloxane concentration in sewage sludge decreased by 40% after 96 hr of pre-aeration; in contrast, the sulfide concentration in sewage sludge did not change. Therefore, pre-aeration can be employed as an efficient treatment option to achieve higher methane yield and lower siloxane concentration in sewage sludge. In addition, reduction of nitrogen loading by pre-aeration can reduce operating costs to achieve better effluent water quality in wastewater treatment plant and benefit the anaerobic process by minimizing the toxic effect of ammonia.

Keywords

Anaerobic digestion;Pre-aeration;Sewage sludge;Siloxane;Solubilization

References

  1. Botheju D, Lie B, Bakke R. Oxygen effects in anaerobic digestion. Model. Identif. Control 2009;30:191-201. https://doi.org/10.4173/mic.2009.4.1
  2. Appels L, Baeyens J, Degreve J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008;34:755-781. https://doi.org/10.1016/j.pecs.2008.06.002
  3. Kim J, Yu Y, Lee C. Thermo-alkaline pretreatment of waste activated sludge at low-temperatures: effects on sludge disintegration, methane production, and methanogen community structure. Bioresour. Technol. 2013;144:194-201. https://doi.org/10.1016/j.biortech.2013.06.115
  4. Dewil R, Appels L, Baeyens J, Degreve J. Peroxidation enhances the biogas production in the anaerobic digestion of biosolids. J. Hazard. Mater. 2007;146:577-581. https://doi.org/10.1016/j.jhazmat.2007.04.059
  5. Dhar BR, Youssef E, Nakhla G, Ray MB. Pretreatment of municipal waste activated sludge for volatile sulfur compounds control in anaerobic digestion. Bioresour. Technol. 2011;102:3776-3782. https://doi.org/10.1016/j.biortech.2010.12.020
  6. Carrere H, Dumas C, Battimelli A, et al. Pretreatment methods to improve sludge anaerobic degradability: a review. J. Hazard. Mater. 2010;183:1-15. https://doi.org/10.1016/j.jhazmat.2010.06.129
  7. Miah MS, Tada C, Yang Y, Sawayama S. Aerobic thermophilic bacteria enhance biogas production. J. Mater. Cycles Waste Manag. 2005;7:48-54. https://doi.org/10.1007/s10163-004-0125-y
  8. Charles W, Walker L, Cord-Ruwisch R. Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour. Technol. 2009;100:2329-2335. https://doi.org/10.1016/j.biortech.2008.11.051
  9. Zhu M, Lu F, Hao LP, He PJ, Shao LM. Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation. Waste Manag. 2009;29:2042-2050. https://doi.org/10.1016/j.wasman.2008.12.023
  10. Johansen JE, Bakke R. Enhancing hydrolysis with microaeration. Water Sci. Technol. 2006;53:43-50.
  11. Hasegawa S, Shiota N, Katsura K, Akashi A. Solubilization of organic sludge by thermophilic aerobic bacteria as a pretreatment for anaerobic digestion. Water Sci. Technol. 2000;41:163-169.
  12. Korea Ministry of Environment. Official test methods of water quality. Gwacheon: Ministry of Environment; 2000.
  13. Nam S, Hur KB, Lee NH. Effects of hydrogen sulfide and siloxane on landfill gas utility facilities. Environ. Eng. Res. 2011;16:159-164. https://doi.org/10.4491/eer.2011.16.3.159
  14. Ajhar M, Travesset M, Yuce S, Melin T. Siloxane removal from landfill and digester gas: a technology overview. Bioresour. Technol. 2010;101:2913-2923. https://doi.org/10.1016/j.biortech.2009.12.018
  15. Clesceri LS, Greenberg AE, Eaton AD. Standard methods for the examination of water and wastewater. 20th ed. Washington: American Public Health Association; 1999.
  16. Dewil R, Appels L, Baeyens J, Buczynska A, Van Vaeck L. The analysis of volatile siloxanes in waste activated sludge. Talanta 2007;74:14-19. https://doi.org/10.1016/j.talanta.2007.05.041
  17. Shelton DR, Tiedje JM. General method for determining anaerobic biodegradation potential. Appl. Environ. Microbiol. 1984;47:850-857.
  18. Choi IS, Jung HS, Han I.Study on sludge reduction by sludge solubilization and change of operation conditions of sewage treatment process. J. Korean Soc. Environ. Eng. 2009;31:1113-1122.
  19. Dhar BR, Elbeshbishy E, Hafez H, Nakhla G, Ray MB. Thermo- oxidative pretreatment of municipal waste activated sludge for volatile sulfur compounds removal and enhanced anaerobic digestion. Chem. Eng. J. 2011;174:166-174. https://doi.org/10.1016/j.cej.2011.08.070
  20. Botheju D, Bakke R. Oxygen effects in anaerobic digestion: a review. Open Waste Manag. J. 2011;4:1-19.
  21. Carvajal A, Pena M, Perez-Elvira S. Autohydrolysis pretreatment of secondary sludge for anaerobic digestion. Biochem. Eng. J. 2013;75:21-31. https://doi.org/10.1016/j.bej.2013.03.002
  22. Pramanik BK, Fatihah S, Shahrom Z, Ahmed E. Biological aerated filters (BAFs) for carbon and nitrogen removal: a review. J. Eng. Sci.Technol. 2012;7:428-446.
  23. Yenigun O. Demirel B. Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 2013;48:901-911. https://doi.org/10.1016/j.procbio.2013.04.012
  24. Lay JJ, Li YY, Noike T. The influence of pH and ammonia concentration on the methane production in high-solids digestion processes. Water Environ. Res. 1998;70:1075-1082. https://doi.org/10.2175/106143098X123426
  25. Munch EV, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors. Water Res. 1996;30:277-284. https://doi.org/10.1016/0043-1354(95)00174-3
  26. Conklin A, Bucher R, Stensel HD, Ferguson J. Effects of oxygen exposure on anaerobic digester sludge. Water Environ. Res. 2007;79:396-405. https://doi.org/10.2175/106143006X111844
  27. Peters V, Conrad R. Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl. Environ. Microbiol. 1995;61:1673-1676.
  28. Gerritse J, Gottschal JC. Two-membered mixed cultures of methanogenic and aerobic bacteria in $O_{2}$ limited chemostats. J. Gen. Microbiol. 1993;139:1853-1860. https://doi.org/10.1099/00221287-139-8-1853
  29. Celis-Garcia ML, Ramirez F, Revah S, Razo-Flores E, Monroy O. Sulphide and oxygen inhibition over the anaerobic digestion of organic matter: influence of microbial immobilization type. Environ. Technol. 2004;25:1265-1275. https://doi.org/10.1080/09593332508618367
  30. Diaz I, Donoso-Bravo A, Fdz-Polanco M. Effect of microaerobic conditions on the degradation kinetics of cellulose. Bioresour. Technol. 2011;102:10139-10142. https://doi.org/10.1016/j.biortech.2011.07.096
  31. Neyens E, Baeyens J, Dewil R, De heyder B. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 2004;106:83-92. https://doi.org/10.1016/j.jhazmat.2003.11.014
  32. Fdz-Polanco M, Diaz I, Perez SI, Lopes AC, Fdz-Polanco F. Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience. Water Sci. Technol. 2009;60:3045-3050. https://doi.org/10.2166/wst.2009.738
  33. Park JK, Lee GM, Lee CY, Hur KB, Lee NH. Analysis of siloxane adsorption characteristics using response surface methodology. Environ. Eng. Res. 2012;17:117-122. https://doi.org/10.4491/eer.2012.17.2.117
  34. Nam S, Namkoong W, Kang JH, Park JK, Lee N. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test. Waste Manag. 2013;33:2091-2098. https://doi.org/10.1016/j.wasman.2013.03.024
  35. Xu L, Shi Y, Cai Y. Occurrence and fate of volatile siloxanes in a municipal wastewater treatment plant of Beijing, China. Water Res. 2013;47:715-724. https://doi.org/10.1016/j.watres.2012.10.046
  36. Shayegan J, Ghavipanjeh F, Mirjafari P. The effect of influent COD and upward flow velocity on the behavior of sulphatereducing bacteria. Process Biochem. 2005;40:2305-2310. https://doi.org/10.1016/j.procbio.2004.09.005
  37. Choi E, Rim JM. Competition and inhibition of sulfate reducers and methane producers in anaerobic treatment. Water Sci. Technol. 1991;23:1259-1264.
  38. Sarti A, Zaiat M. Anaerobic treatment of sulfate-rich wastewater in an anaerobic sequential batch reactor (AnSBR) using butanol as the carbon source. J. Environ. Manag. 2011;92:1537-1541. https://doi.org/10.1016/j.jenvman.2011.01.009

Cited by

  1. Enhancement of anaerobic batch digestion of spineless cacti (Opuntia ficus indica) feedstock by aerobic pre-treatment vol.18, pp.1, 2019, https://doi.org/10.5897/AJB2018.16652